• 제목/요약/키워드: 경량화 모델

검색결과 312건 처리시간 0.021초

지능형 엣지 컴퓨팅 기기를 위한 온디바이스 AI 비전 모델의 경량화 방식 분석 (Analysis on Lightweight Methods of On-Device AI Vision Model for Intelligent Edge Computing Devices)

  • 주혜현;강남희
    • 한국인터넷방송통신학회논문지
    • /
    • 제24권1호
    • /
    • pp.1-8
    • /
    • 2024
  • 실시간 처리 및 프라이버시 강화를 위해 인공지능 모델을 엣지에서 동작시킬 수 있는 온디바이스 AI 기술이 각광받고 있다. 지능형 사물인터넷 기술이 다양한 산업에 적용되면서 온디바이스 AI 기술을 활용한 서비스가 크게 증가하고 있다. 그러나 일반적인 딥러닝 모델은 추론 및 학습을 위해 많은 연산 자원을 요구하고 있다. 따라서 엣지에 적용되는 경량 기기에서 딥러닝 모델을 동작시키기 위해 양자화나 가지치기와 같은 다양한 경량화 기법들이 적용되어야 한다. 본 논문에서는 다양한 경량화 기법 중 가지치기 기술을 중심으로 엣지 컴퓨팅 기기에서 딥러닝 모델을 경량화하여 적용할 수 있는 방안을 분석한다. 특히, 동적 및 정적 가지치기 기법을 적용하여 경량화된 비전 모델의 추론 속도, 정확도 그리고 메모리 사용량을 시험한다. 논문에서 분석된 내용은 실시간 특성이 중요한 지능형 영상 관제 시스템이나 자율 이동체의 영상 보안 시스템에 적용될 수 있다. 또한 사물인터넷 기술이 적용되는 다양한 서비스와 산업에 더욱 효과적으로 활용될 수 있을 것으로 기대된다.

양자화 기반의 모델 압축을 이용한 ONNX 경량화 (Lightweight of ONNX using Quantization-based Model Compression)

  • 장두혁;이정수;허준영
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권1호
    • /
    • pp.93-98
    • /
    • 2021
  • 딥 러닝의 발전으로 다양한 AI 기반의 응용이 많아지고, 그 모델의 규모도 매우 커지고 있다. 그러나 임베디드 기기와 같이 자원이 제한적인 환경에서는 모델의 적용이 어렵거나 전력 부족 등의 문제가 존재한다. 이를 해결하기 위해서 클라우드 기술 또는 오프로딩 기술을 활용하거나, 모델의 매개변수 개수를 줄이거나 계산을 최적화하는 등의 경량화 방법이 제안되었다. 본 논문에서는 다양한 프레임워크들의 상호 교환 포맷으로 사용되고 있는 ONNX(개방형 신경망 교환 포맷) 포맷에 딥러닝 경량화 방법 중 학습된 모델의 양자화를 적용한다. 경량화 전 모델과의 신경망 구조와 추론성능을 비교하고, 양자화를 위한 다양한 모듈 방식를 분석한다. 실험을 통해 ONNX의 양자화 결과, 정확도는 차이가 거의 없으며 기존 모델보다 매개변수 크기가 압축되었으며 추론 시간 또한 전보다 최적화되었음을 알 수 있었다.

증강현실 시각화를 위해 K-최근접 이웃을 사용한 BIM 메쉬 경량화 알고리즘 (BIM Mesh Optimization Algorithm Using K-Nearest Neighbors for Augmented Reality Visualization)

  • 빠 빠 윈 아웅;이동환;박주영;조민건;박승희
    • 대한토목학회논문집
    • /
    • 제42권2호
    • /
    • pp.249-256
    • /
    • 2022
  • 최근 BIM (Building Information Modeling)과 AR (Augmented Reality)을 결합한 실시간 시각화 기술이 건설관리 의사 결정 및 처리 효율성을 높이는 데 도움이 된다는 것을 보여주기 위한 다양한 연구가 활발히 진행되고 있다. 그러나, 대용량 BIM 데이터는 AR에 적용할 경우 데이터 전송 문제, 이미지 단절, 영상 끊김 등과 같은 다양한 문제가 발생함으로 3차원(3D) 모델의 메쉬 최적화를 통해 시각화의 효율성을 향상시켜야 한다. 대부분의 기존 메쉬 경량화 방법은 복잡하고 경계가 많은 3D 모델의 메쉬를 적절하게 처리할 수 없다. 이에 본 연구에서는 고성능 AR 시각화를 위해 BIM 데이터를 재구성하기 위한 k-최근접이웃(KNN) 분류 프레임워크 기반 메쉬 경량화 알고리즘을 제안하였다. 제안 알고리즘은 선정된 BIM 모델을 삼각형 중심 개념 기반의 Unity C# 코드로 경량화하였고 모델의 데이터 세트를 활용하여 정점 사이의 거리를 정의할 수 있는 KNN로 분류되었다. 그 결과 전체 모델과 각 구조의 경량화 메쉬 점 및 삼각형 개수가 각각 약 56 % 및 약 42 % 감소됨을 확인할 수 있었다. 결과적으로, 원본 모델과 비교했을 때 경량화한 모델은 시각적인 요소 및 정보 손실이 없었고, 따라서, AR 기기 활용 시 고성능 시각화를 향상시킬 수 있을 것으로 기대된다.

SVD에 기반한 모델 경량화를 통한 문서 그라운딩된 응답 생성 (Lightweight Language Models based on SVD for Document-Grounded Response Generation)

  • 이검;서대룡;전동현;강인호;나승훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.638-643
    • /
    • 2023
  • 문서 기반 대화 시스템은 크게 질문으로부터 문서를 검색하는 과정과 응답 텍스트를 생성하는 과정으로 나뉜다. 이러한 대화 시스템의 응답 생성 과정에 디코더 기반 LLM을 사용하기 위해서 사전 학습된 LLM을 미세 조정한다면 많은 메모리, 연산 자원이 소모된다. 본 연구에서는 SVD에 기반한 LLM의 경량화를 시도한다. 사전 학습된 polyglot-ko 모델의 행렬을 SVD로 분해한 뒤, full-fine-tuning 해보고, LoRA를 붙여서 미세 조정 해본 뒤, 원본 모델을 미세 조정한 것과 점수를 비교하고, 정성평가를 수행하여 경량화된 모델의 응답 생성 성능을 평가한다. 문서 기반 대화를 위한 한국어 대화 데이터셋인 KoDoc2Dial에 대하여 평가한다.

  • PDF

음향 장면 분류를 위한 경량화 모형 연구 (Light weight architecture for acoustic scene classification)

  • 임소영;곽일엽
    • 응용통계연구
    • /
    • 제34권6호
    • /
    • pp.979-993
    • /
    • 2021
  • 음향 장면 분류는 오디오 파일이 녹음된 환경이 어디인지 분류하는 문제이다. 이는 음향 장면 분류와 관련한 대회인 DCASE 대회에서 꾸준하게 연구되었던 분야이다. 실제 응용 분야에 음향 장면 분류 문제를 적용할 때, 모델의 복잡도를 고려하여야 한다. 특히 경량 기기에 적용하기 위해서는 경량 딥러닝 모델이 필요하다. 우리는 경량 기술이 적용된 여러 모델을 비교하였다. 먼저 log mel-spectrogram, deltas, delta-deltas 피쳐를 사용한 합성곱 신경망(CNN) 기반의 기본 모델을 제안하였다. 그리고 원래의 합성곱 층을 depthwise separable convolution block, linear bottleneck inverted residual block과 같은 효율적인 합성곱 블록으로 대체하고, 각 모델에 대하여 Quantization를 적용하여 경량 모델을 제안하였다. 경량화 기술을 고려한 모델은 기본 모델에 대비하여 성능이 비슷하거나 조금 낮은 성능을 보였지만, 모델 사이즈는 503KB에서 42.76KB로 작아진 것을 확인하였다.

효율적인 Transformer 모델 경량화를 위한 구조화된 프루닝 (Structured Pruning for Efficient Transformer Model compression)

  • 류은지;이영주
    • 반도체공학회 논문지
    • /
    • 제1권1호
    • /
    • pp.23-30
    • /
    • 2023
  • 최근 거대 IT 기업들의 Generative AI 기술 개발로 Transformer 모델의 규모가 조 단위를 넘어가며 기하급수적으로 증가하고 있다. 이러한 AI 서비스를 지속적으로 가능케 하기 위해선 모델 경량화가 필수적이다. 본 논문에서는 하드웨어 친화적으로 구조화된(structured) 프루닝 패턴을 찾아 Transformer 모델의 경량화 방법을 제안한다. 이는 모델 알고리즘의 특성을 살려 압축을 진행하기 때문에 모델의 크기는 줄어들면서 성능은 최대한 유지할 수 있다. 실험에 따르면 GPT2 와 BERT 언어 모델을 프루닝할 때 제안하는 구조화된 프루닝 기법은 희소성이 높은 영역에서도 미세 조정된(fine-grained) 프루닝과 거의 흡사한 성능을 보여준다. 이 접근 방식은 미세 조정된 프루닝 대비 0.003%의 정확도 손실로 모델매개 변수를 80% 줄이고 구조화된 형태로 하드웨어 가속화를 진행할 수 있다.

주파수 영역에서의 군집화 기반 계층별 딥 뉴럴 네트워크 압축 (Deep Neural Network compression based on clustering of per layer in frequency domain)

  • 홍민수;김성제;정진우
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 추계학술대회
    • /
    • pp.64-67
    • /
    • 2020
  • 최근 다양한 분야에서 딥 러닝 기반의 많은 연구가 진행되고 있으며 이에 따라 딥 러닝 모델의 경량화를 통해 제한된 메모리를 가진 하드웨어에 올릴 수 있는 경량화 된 딥 뉴럴 네트워크(DNN)를 개발하는 연구도 활발해졌다. 이에 본 논문은 주파수 영역에서의 군집화 기반 계층별 딥 뉴럴 네트워크 압축을 제안한다. 이산 코사인 변환, 양자화, 군집화, 적응적 엔트로피 코딩 과정을 각 모델의 계층에 순차적으로 적용하여 DNN이 차지하는 메모리를 줄인다. 제안한 알고리즘을 통해 VGG16을 손실률은 1% 미만의 손실에서 전체 가중치를 3.98%까지 압축, 약 25배가량 경량화 할 수 있었다.

  • PDF

임베디드 시스템 환경에서의 INT8 및 FP32 기반 Mixed Precision 의 정확도 실험 및 분석 (Accuracy Experiment and Analysis of INT8 and FP32 based Mixed Precision Layer in Embedded System Environments)

  • 장경빈 ;이종은 ;임승호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.534-535
    • /
    • 2023
  • 최근 CNN 기반 객체인식 시스템은 고정밀도 모델을 기반으로 정확도를 높이고 있다. 하지만 고정밀도 모델일수록 모델의 크기가 늘어나고 더 많은 하드웨어 자원을 필요로 한다. 따라서 모델 경량화 기술이 많이 연구되고 있으며, 그 중에 대표적인 경량화 기술이 양자화 기술이다. 양자화 기술은 파라미터의 크기와 연산 오버헤드를 줄이지만, 정확도 역시 줄어들게 된다. 영자화와 정확도의 상관관계를 분석하기 위해서 본 논문에서는 INT8 과 FP32 을 이용한 Mixed precision CNN 을 실행시키기 위한 프레임워크를 구성하고, 임베디드 시스템 환경에서의 INT8 연산에 기반하여 맞추어 각 layer 별 Mixed Precision 연산을 수행하여 보고, 모델의 정확도를 측정하여 분석하여 보았다.

임베디드 환경에서 효율적인 동작을 위한 객체검출 모델 변환 및 경량화 (Object detection model conversion and weight reduction for efficient operation in embedded environment)

  • 최인규;송혁
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 하계학술대회
    • /
    • pp.244-245
    • /
    • 2022
  • 최근에는 우수한 성능의 딥러닝 기술을 활용한 장비와 프로그램이 개발되고 있으나 기술의 특성상 모든 환경에서 우수한 성능을 보여주지 못하고 고 사양의 서버와 같은 환경에서의 성능만을 보장하고 있다. 따라서 이에 대한 개선으로 엣지 디바이스 독립적으로 혹은 클라우드 의존과 인터넷 연결을 최소화 할 수 있는 엣지 컴퓨팅 기술이 제안되고 있으며 경량 내장형 시스템에 적합한 인공지능 기술의 개발이 필요하다. 본 논문에서는 객체검출 모델을 적은 연산과 효율적인 구조로 설계하고 생성된 모델을 임베디드 보드에서 원활하게 실행할 수 있도록 중립 모델로 변환하고 경량화 하는 방법에 대해 소개한다. Qualcomm snapdragon 프로세서가 갖춰진 임베디드 보드를 목표로 하였고 편의를 위해 SNPE(snapdragon neural processing engine) SDK를 이용하여 실험을 진행하였다. 실험 결과 변환된 중립모델이 기존 모델과 비교하여 압축된 모델 크기 대비 미미한 성능 저하가 발생함을 확인할 수 있었다.

  • PDF

중형엔진 실린더 프레임 턴오버용 지그의 구조 최적화 (Structural Optimization of Turnover Jig of Cylinder Frame for Medium-speed Diesel Engine)

  • 이종환;손정호
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.31-32
    • /
    • 2006
  • 본 논문은 중형엔진 조립과정에서 실린더 프레임 회전 작업에 사용하는 지그의 구조해석을 수행한 후, 지그의 안전성을 검토하고 지그의 경량화를 통하여 실용적인 지그 설계안을 제안하였다. 현장 작업자가 들 수 있는 최대 무게를 넘는 지그를 구조해석 모델로 선정한 후, 해석모델은 지그, 실린더 프레임, 볼트, 너트, 샤클 핀을 3차원 입체요소로 구성하고 ABAQUS/Standard를 사용하여 재료 비선형 및 접촉을 고려한 구조해석을 수행하였다. 구조최적화를 위하여 응력이 상대적으로 낮은 부위와 작업성을 고려하여 설계변수를 선정하고, 실험계획법의 직교배열표를 활용하여 설계변수에 대한 각 부위의 민감도와 경량화 모델을 도출하였다.

  • PDF