• Title/Summary/Keyword: 경량성토재

Search Result 18, Processing Time 0.057 seconds

Bearing Capacity Characteristics of the Light Weight Method Used Recycled EPS Beads (폐 EPS 입자를 활용한 경량성토공법의 지지력 평가)

  • Lee, Jongkyu;Lee, Bongjik;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.5
    • /
    • pp.21-29
    • /
    • 2006
  • Light weight filling method prevents settlement of ground by decreasing the weight of fills. This method is increasingly used for it's convenience and workability. Styrofoam is increasingly used as a lightweight filling material in soft ground. The beneficial effects of the use of EPS derive from minimizing the stress increment, increasing the bearing capacity and reducing the settlement. For this study, model test and FEM analysis of bearing capacity is carried out composing two-layered ground with clay in the lower layer and lightweight filling material in upper layer. Based on the results obtained here in this study, it is concluded that the use of recycled EPS beads is acceptable lightweight fill. Light weight fills used for disposal is superior to typical embankment fills in bearing capacity.

  • PDF

Compaction and Leaching Characteristics of the Light Weight Soil Used Recycled Styrofoam Beads and Disposal soils (폐 Styrofoam 혼합토의 다짐 및 용출 특성)

  • Shin, Bang-Woong;Lee, Bong-Jik;Lee, Jong-Kyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.2
    • /
    • pp.61-70
    • /
    • 2002
  • This paper presents the engineering property of light weight soil made of soil mixed with recycled Styrofoam and stabilizer. Recycled Styrofoam is widely used for lightweight fill material because it has important geotechnical characteristics which are light, adiabatic, and effective for vibration interception. It is very easy to get the disposal styrofoam. For this study, dynamic compaction test, static compaction test and pH and leaching tests were performed. Based on the test results, it is concluded that the static compaction method is recommened to prevent from crushing materials and pH values of embankment materials are satisfied with these of domestic and RCRA configuration.

  • PDF

A Study on Engineering Characteristics of Geotechnical Material Using By-Product Lime and Pieces of Waste EPS Beads (석회부산물 및 폐 EPS beads를 활용한 지반재료의 공학적 특성에 관한 연구)

  • Bang, Yoon-Kyung;Park, Min-Yong;Yoon, Chang-Jin;Kim, Hong-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.97-105
    • /
    • 2004
  • The purpose of this study is to provide the ways of recycling of by-product limes as lightweight fill, backfill materials, and lightweight blocks by performing experimental study. New lightweight fill materials and blocks were devised by mixing by-product lime, weathered granite soil, small pieces of waste EPS, and Portland cement. Physical, geotechnical, and environmental properties of the lightweight mixed soils and blocks were analysed by laboratory experiments for mixed samples manufactured with various mixing ratios. KMS tests were also performed to evaluate the concentration variation of the chemical components of the light weight blocks leachates. It is expected that this study will contribute to resolving the problem of by-product lime disposal as well as to recycling the by-product limes as fill materials and blocks.

A Study on the Basic and Compression Characteristics of Lightweight Waste for Use as Fill Materials (성토재 적용을 위한 경량폐기물의 기본물성 및 압축특성 연구)

  • Lee, Sung-Jin;Kim, Yun-Ki;Koh, Tae-Hoon;Lee, Su-Hyung;Shin, Min-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.5
    • /
    • pp.61-74
    • /
    • 2011
  • This is a fundamental research on use as fill material of lightweight waste such as bottom ash and tire shred. We carried out the test for particle size distribution, specific gravity, density, shear strength, permeability and vertical compression settlement, considering water content change and temperature effect of several waste materials. Bottom ash, which is lighter than soils, has similar permeability and particle size distribution to those of weathered soils. But permeability may differ depending on the particle size distribution. The shear strength aspect of bottom ash and tire shred mixed materials are similar to that of natural fill materials. In the 1-D vertical compression settlement test, we could be assured that bottom ash and tire shred mixed materials showed similar compression settlement to that of sand under actual vertical stress. Furthermore, materials including bottom ash showed smaller compression settlement than that of weathered soils in the long-term settlement test under wetting and freezing-thawing condition.

A Study on Self-Hardening Characteristics of Coal Ash by Mixing Ratio of Fly Ash and Bottom Ash (비회와 저회의 배합비에 따른 석탄회의 자경성에 관한 연구)

  • Shin, Woonggi;Lim, Daesung;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.85-91
    • /
    • 2010
  • As enormous construction projects of land development are carried out around Korea, useful construction materials are needed to perform the construction projects. However, there are no more enough of fill and reclamation materials in our country. That is why the coal ash is expected to be utilized as an alternative material. Since the coal ash has the characteristics of a pozzolan and a selfhardening material, it is adjudged that coal ash has a great possibility to be used as a fill and reclamation material. In this study, grain size analysis, Atterberg limit test, and specific gravity test were performed to examine the physical characteristics of the coal ash about a self-hardening material before utilizing the coal ash in the construction. Compaction test, unconfined compression test, direct shear test, and flexible wall permeability test were conducted to investigate the engineering characteristics according to mixture ratios of fly ash and bottom ash. As a result of the tests, it was confirmed that the mixing ratio 1:1 of fly ash and bottom ash is the most effective to use as a fill and reclamation material. If the mixture of coal ash is used as a backfill material with light weight around structure, it is expected to play a significant role in reducing earth pressure on the back of the structure. As the age of the mixture of coal ash goes by, it intends to decrease the coefficient of permeability. As described above, the coal ash should be considered as an alternative material of fill and reclamation materials since the result of the tests indicates that the coal ash is suitable to a useful material on the construction design.

Compaction Propertiesof Light Weight Soil Mixtures Using Crushed Expanded Polystyrene (파쇄된 발포폴리스티렌을 이용한 경량혼합토의 다짐특성)

  • Kang, Sung;Chang, Pyoung-Wuck
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.1
    • /
    • pp.79-85
    • /
    • 1999
  • Use of soils with crushed expanded polystyrene(EPS) satisfied both recycling of industrial waste and development of new light-weight fill materials. Objectives of the study were to make the mixed the mixed soils with the crushed EPS and to suggest the most rational mixing ration as a fill material. A series of laboratory tests was performed to investigate the relationship between miximum dry density and optimum moisture contenr and to find the variation of CBR for mixtures with 3 soils and 2 sizes of the crushed EPS. Results of the test showed that the sizes fo the curshed EPS had a little effect on the properties of mixed soils. But gradatiion of soils and mixing ration with the crushed EPS were important factors to characterize compaction properties of the mixed soils.

  • PDF

A Case Study of Stability of Bridge Abutment Using the Light Banking Material(EPS) (경량성토재(EPS)를 이용한 교량 교대의 안정성 검토)

  • Chang, Yong-Chai
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.5
    • /
    • pp.80-90
    • /
    • 1998
  • The EPS construction method-one kind of the load reducing methods-utilizes the EPS blocks, ultra-light materials whose unit weight is about 1/100 of soils and has been applied to many soft ground sites. It needed 3,000 days to get the 90% degree of the consolidation for the case of 12m high soil embankments on the 30m thick soft clayey foundations. The N value of SPT at this deposit was less than 5. The pack drain was installed to promote the radial consolidations. Although staged embankments were planned, designers failed to get a sufficient stability of the foundation ground. Therefore, the EPS fill method was selected to reduce the load and the construction period. EPS blocks(D-20 model) replaced the upper part of the soil embankments. These complex embankments reduced the ground settlement and the construction period. The possibility of lateral movements of the bridge abutments was checked and the design scheme was reviewed.

  • PDF

Compression and Tensile Characteristics of Lightweight Air-Trapped Soil (경량기포토의 압축 및 인장 특성)

  • Lee, Young-Jun;Kim, Sung-Won;Park, Lee-Keun;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.9
    • /
    • pp.59-69
    • /
    • 2010
  • This study is experimentally investigated for characteristics of lightweight air-trapped soils with uniform quality. Previously, EPS (Expanded PolyStyrene) blocks are often used as lightweight embankment, but many problems such as the level difference and cracks were caused by plastic (creep) deformation. So, a new material development is urgent. By means of alternatives, lightweight air-mixed soil using in-situ soils has been developed and applied to fields. In comparison with EPS block, lightweight air-mixed soil has less plastic (creep) deformation in long period, but the strength characteristics are different according to the soils where they are obtained. Therefore, the quality management of lightweight air-mixed soil is very difficult. Therefore in this study, characteristics of lightweight air-trapped soil using a manufactured sand with uniform quality are investigated. To found out the compression and tensile characteristics of lightweight air-tapped soils, unconfined compression test and splitting tensile test are conducted on the specimens prepared with different unit weight, cement-sand ratio and air-pore.