• Title/Summary/Keyword: 경계 편심

Search Result 12, Processing Time 0.024 seconds

Buckling Behavior of I-Beam with the Elastic Support (탄성 경계를 고려한 I형보의 좌굴 거동)

  • Kang, Young Jong;Lee, Gyu Sei;Lim, Nam Hyoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.201-212
    • /
    • 1999
  • A beam supported by a flexible elastic support is commonly used as structural elements, e.g., braced beam, railway track, etc. The elastic support can be located in arbitrary point in the cross-section. This paper investigates the effects of support eccentricity on the elastic buckling of beams with elastic supports. The effects of stiffness of the elastic support are also studied. A beam element with elastic supports and the analysis program are developed for elastic buckling analysis using finite element formulation. The elastic support is modeled by elastic spring element. Using the offset technique, the eccentricity of support is taken into account. A beam element having 14 degrees of freedom including the warping degree of freedom is used. Various numerical example analyses show that the present formulation and analysis program accurately and effectively compute the buckling load and mode of beams with elastic supports.

  • PDF

Aberration Correction of an Off-axial-field Two-mirror System Using a Decentered Aperture (비축시야 2반사광학계에서 조리개의 편심을 이용한 수차보정)

  • Lee, Jong-Ung
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.1
    • /
    • pp.20-25
    • /
    • 2020
  • To design a wide-field two-mirror system, the system must feature an off-axial field, to avoid ray obstruction and field screening by the secondary mirror. The off-axial aberrations of the system cannot be corrected sufficiently, though, because there are only a few design parameters. The present study designs an improved off-axial-field two-mirror system using a decentered aperture stop.

Behavior Analysis of Eccentrically Loaded Restrained Reinforced Concrete Slender Columns (편심축하중을 받는 구속 RC장주의 거동 해석)

  • Park, Jai Oun;Choung, Kyoung Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.11-24
    • /
    • 1990
  • The effect of end restraints for adjoining members is the different variables influencing the column ultimate strength and the behavior. The propose of this study is to analyze eccentrically loaded reinforced concrete columns with the end restraind effect having rectangular cross-section and general boundary conditions. Accordingly, this investigation are to construct a typical analytical model of the reinforced concrete columns with general end boundary conditions. The mechanical components of the analytical model are to be rationally defined the actual behavior as possible, and the different variables influencing the behavior and the ultimate strength of the reinforced concrete columns are investigated by using a parametric study.

  • PDF

A Numerical Analysis of the Thermal Hydraulic Characteristics in a Channel of 37 Rods (전산해석을 통한 37개봉으로 구성된 유로에서의 열유체학적 특성분석)

  • 전태현;심윤섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.50-55
    • /
    • 1986
  • Characteristics of the flow and heat transfer in a channel of 37 rods are investigated numerically. The flow is taken to be a fully developed incompressible laminar flow and it has an uniform temperature profile at the inlet and flows down through the channel of constant wall temperature. A boundary-fitted coordinate system is used for the complex geometry. Calculation is initiated by calculating the developed flow profile and then proceeds to temperature development. Through the calculation the details of the flow and temperature distribution characteristics are found, and discussion is made on the mechanism of the transport phenomena in the complex geometry in terms of wall shear stress distribution, non-dimensionalized velocity, friction factor, Nusselt number distribution, Reynolds number, and porosity. Also the effects of the eccentricity in rod configuration are analyzed and its importance is emphasized.

Evaluation of Gap Heat Transfer Model in ELESTRES for CANDU Fuel Element Under Normal Operating Conditions (CANDU형 핵연료봉의 정상상태 계산용 ELESTRES 코드내 간극 열전달 모델 평가)

  • Lee, Kang-Moon;Ohn, Myung-Yong;Lim, Hong-Sik;Park, Jong-Ho;Hwang, Son-Tae
    • Nuclear Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.344-357
    • /
    • 1995
  • The gap conductance between the fuel and the sheath depends strongly on the gap width and has a significant influence on the amount of initial stored energy. The modified Ross and Stoute gap conductance model in ELESTRES is based on a simplified thermal deformation model for steady-state fuel temperature calculations. A review on a series of experiments reveals that fuel pellets crack relocate, and are eccentrically positioned within the sheath rather than solid concentric cylinders. In this paper, the hue recently-proposed gap conductance models (offset gap model and relocated gap model) are described and are applied to calculate the fuel-sheath gap conductances under experimental conditions and normal operating conditions in CANDU reactors. The good agreement between the experimentally-inferred and calculated gap conductance values demonstrates that the modified Ross and Stoute model was implemented correctly in ELESTRES. The predictions of the modified Ross and Stoute model provide conservative values for gap heat transfer and fuel surface temperature compared to the offset gap and relocated gap models for a limiting power envelope.

  • PDF

Structural Performance of the RC Boundary Beam-Wall System Subjected to Axial Loads (축하중이 작용하는 철근 콘크리트 경계보-벽체 시스템의 압축성능 평가)

  • Han, Jin-Ju;Son, Hong-Jun;Kim, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.1
    • /
    • pp.57-64
    • /
    • 2022
  • This study investigated the structural performance of the RC boundary beam-wall system subjected to axial loads that required lesser construction quantity and smaller floor height in comparison with the conventional RC transfer girder system. Four specimens of 1/2 scale were constructed, and their peak strengths under axial loads and failure characteristics were compared and analyzed. Test parameters included the ratio of the lower to the upper wall length, lower wall thickness, and stirrup details of the lower wall. In addition, three-dimensional nonlinear finite element analysis was performed to verify the effectiveness of the boundary beam-wall system. The peak strength of each specimen was similar to the nominal axial strength of the lower wall, indicating that the axial load was transferred smoothly from the upper to the lower wall. The contribution of the lower wall cross-section was high if the ratio of the lower to the upper wall length was small; the contribution was low if the out-of-plane eccentricity existed in the lower wall. The specimen with smaller stirrup distance and cross-ties in the lower wall showed higher initial stiffness and peak load than other specimens.

Optical Design of an Off-Axial-Field Two-Mirror System with a Displaced Stop and a Secondary Mirror (조리개와 제 2거울이 횡이동된 비축시야 2반사 광학계 설계)

  • Nam, Ji-Woo;Lee, Jong-Ung
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.6
    • /
    • pp.304-313
    • /
    • 2020
  • By using an off-axial field with an inverse Cassegrain system where the aperture stop is at the secondary mirror, the two-mirror system can be used for a wide-field objective. However, aberration corrections in conventional two-mirror systems are limited because the design parameters are too small. In this study, we present a new improved design of the off-axial-field two-mirror system. The new design has an independently displaced aperture stop and a secondary mirror. The new design parameters yield more improvement in correction for 5th-order coma and astigmatism, and better aberration balancing for the whole off-axial field. The spot sizes of the new design system are reduced to half of those for a conventional reference design, and the improvement effects are shown for the whole field evenly.

Force-Deformation Relationship of Bearing-Type Bolted Connections Governed by Bolt Shear Rupture (볼트 전단파단이 지배하는 지압형식 볼트접합부의 힘-변형 관계)

  • Kim, Dae Kyung;Lee, Cheol Ho;Jin, Seung Pyo;Yoon, Seong Hwahn
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.1-12
    • /
    • 2015
  • Well-designed bolted connections can exhibit excellent ductile behavior through bearing mechanism until the occurrence of bolt shear rupture. The ultimate strength analysis of eccentric bolted connections is an economical and mechanistic approach which uses such ductility. However, the bolt load-deformation relationship, which forms basis of the current practice, is based on very limited combinations of bolt and steel materials. The primary objective of this study was to establish the general bolt force-deformation relationship based on systematic single-bolt bearing connection tests. The test results showed that the projected area of the bolt hole and the strength and thickness of the plate to be connected are the main factors affecting the force-deformation relationship. The results of this study can be used for the instantaneous center of rotation method (ICRM) to achieve more accurate analysis and economical design of a variety of group-bolted connections subjected to eccentric shear.

Analytical Solution for Transient Groundwater Flow in Vertical Cutoff Walls : Application of Slug Test and Evaluation of Hydraulic Conductivity (연직차수벽의 비정상 지하수 흐름에 대한 이론해 : 순간변위시험(slug test) 적용과 투수계수 산정)

  • Lim, Jee-Hee;Lee, Dong-Seop;Nguyen, The Bao;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.11
    • /
    • pp.17-31
    • /
    • 2012
  • No analytical solution exists for evaluating in-situ hydraulic conductivity of vertical cutoff walls by analyzing slug test results with consideration of transient flow. There is an analytical solution proposed to interpret a slug test performed in a partially penetrated well within an aquifer. However, this analytical solution cannot be directly applied to the cutoff wall because the solution has been developed exclusively for an infinite aquifer instead of a narrow cutoff wall. To consider the cutoff wall boundary conditions (i.e, constant head boundary and no flux boundary condition), the analytical solution has been modified in this study to take into account the narrow boundaries by introducing the imaginary well theory. Type curves are constructed from the currently derived analytical solution and compared with those of a partially penetrated well within an aquifer. The constant head boundary condition provides faster hydraulic head recovery curve than the aquifer case. On the other hand, no flux boundary condition leads to slower hydraulic head recovery. The bigger the shape factor and deviation of the well and the smaller the width of the vertical cutoff wall are, the more effect of boundary condition was observed. The type curves obtained from the analytical solution for a cutoff wall are similar to those made by the numerical method in the literature.

Effects of Port Shape on Steady Flow Characteristics in an SI Engine with Semi-Wedge Combustion Chamber (1) - Velocity Distribution (1) (반 쐐기형 연소실을 채택한 SI 기관에서 포트형상이 정상유동 특성에 미치는 영향 (1) - 유속분포 (1))

  • Kim, Hyeongsig;Ohm, Inyong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.7
    • /
    • pp.417-427
    • /
    • 2016
  • This paper is the first investigation of the steady flow characteristics of an SI engine with a semi-wedge combustion chamber as a function of the port shape. For this purpose, the planar velocity profiles were measured at the 1.75B position by particle image velocimetry. The flow patterns were examined with both a straight and a helical port. Two swirls were observed up to 4 mm valve lift with the straight port and up to 2 mm with the helical one; however, only one swirl was present after these lifts. The flow characteristics changed suddenly between 4 and 5 mm lift in the straight port; on the other hand, the change with lift was gradual with the helical port - the transition points between flow regimes were different with the port shapes. In addition, the centers of the swirls were relatively far from the cylinder center so that the effect of eccentricity may not be negligible at 1.75B, regardless the shape. The eccentricity values with the straight port were especially high - over 0.5 for all lifts. Finally, real velocities were found to be much lower than those predicted by the assumption of ISM evaluation, with the profiles differing qualitatively as well.