• Title/Summary/Keyword: 경계 특성

Search Result 2,878, Processing Time 0.032 seconds

Kinematics and ESR Ages for Fault Gouges of the Quaternary Jingwan Fault, Dangjin, western Korea (당진 지역 제4기 진관단층의 운동 특성과 단층비지의 ESR 연령)

  • Choi, Pom-Yong;Hwang, Jae Ha;Bae, Hankyoung;Lee, Hee-Kwon;Kyung, Jai Bok
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • In order to outline the kinematics and movement history of a new Quaternary fault, Jingwan Fault in Dangjin, West Korea, we analyzed the geometry of the fault zone composed of a few gouge zones, and made ESR dating for fault gouge materials. The $N55^{\circ}E$ striking Jingwan Fault is a normal fault and exhibits a gradual change in dip (gentle in the lower part, steep in the upper part), indicating a listric fault. As for the fault gouge zone, its thickness varies and reaches 2~3 cm in the lower part or between basement rocks, and 20~30 cm in the middle-upper part or between the basement and Quaternary deposit. It is observed in the latter case that more than three gouge zones develop with different colors, and branch out and re-merge, or they are partly superimposed, indicating different movement episodes. The cumulative displacement is estimated to be about 10 m using the geological cross-sections, from which it is inferred that the total length of fault may be about 2.5 km on the basis of the empirical relation between cumulative displacement and fault length. Therefore, a more study would be needed to verify the entire fault length. The results of ESR dating for three gouge samples at different spots along the fault yields ages of $651{\pm}47$, $649{\pm}96$, and $436{\pm}66ka$, indicating at least two movement episodes. Slickenlines observed on the fault planes indicate a pure dip slip (normal faulting), which suggests that the ENE-WSW trending Jingwan Fault was presumably moved under a NNW-SSE extensional environment.

A Study on Geophysical Characteristics and Regional Geological Structures of the Southwestern Yellow Sea of Korea using Gravity and Magnetic Data (중력 및 자력자료를 이용한 황해 남서부해역의 지구물리학적 특성 및 광역 지구조 연구)

  • Kim, Chang-Hwan;Park, Chan-Hong
    • Journal of the Korean earth science society
    • /
    • v.31 no.3
    • /
    • pp.214-224
    • /
    • 2010
  • Gravity and Magnetic survey data were analyzed to investigate the geophysical characteristics and regional geological structures of the southwestern Yellow Sea. The set of data about the southwestern part of the Yellow Sea in Korea was one collected by the Korea Ocean Research and Development Institute (KORDI) in 2003, 2004, and 2005. The Yellow Sea has a few basins and the study area also includes parts of the Heuksan Basin and the East China Sea Basin. The bathymetry of the study area ranges from about ?40 m southwestward near China to about 150 m northeastward near Korea. The bathymetry has the gentle rise and fall and the smooth slope. The gravity anomalies, from sea surface gravity and satellite gravity data, reflect the basement rocks rather than the smooth bathymetry. The gravity anomalies are higher on Northeastern part of the study area and lower over the South of the Heuksan Basin. The analytic signal from the Bouguer anomaly shows higher anomalous zones near the boundaries of the basins. The magnetic anomalies and the analytic signal, from the magnetic data, suggest that the complex anomalies on the Northern part are attributed to the volcanic intrusions and that the smooth patterns in the Southern part are based on the lack of the intrusions. The power spectrum analysis of the Bouguer anomalies and the magnetic anomalies indicate that the depth to the Moho discontinuity varies from about 30.2 to 28.3 km and that the depths of the basement rocks and the Eocene discontinuity range from about 8.4 to 8 km and from about 1.5 to 1.7 km, respectively. The inversion of the Bouguer anomaly shows that the Moho depth to the Western part of the study area near China is slightly deeper than the Eastern part near Korea. The result of 2-D gravity modeling has a good coherence with the results of the analytic signal, the power spectrum analysis, and the inversion.

Habitats Environmental and Population Characteristics of Iris koreana Nakai, a Rare and Endemic Species in Korea (한반도 희귀·특산식물 노랑붓꽃의 자생지 환경 및 개체군 특성)

  • Pi, Jung-Hun;Park, Jeong-Geun;Jung, Ji-Young;Park, Jeong-Seok;Suh, Gang-Uk;Son, Sung-Won
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.2
    • /
    • pp.102-109
    • /
    • 2016
  • The sustainability of Iris koreana, a rare and endemic plant designated by the Korea Forest Service, is threatened due to artificial factors such as habitats loss and climate change etc. and internal factors such as changes in biological properties of the habitats etc. but conservation biology research has not been performed in South Korea. The objective of this study is to establish the species conservation strategies by analyzing the characteristics of their habitats, including: 1) Population characteristics, and 2) habitat analysis of the vegetation and abiotic environments. From April to May, 2015, population characteristics [density (stems $m^{-2}$), flowering rate (%) and leaf area size ($cm^2$)] in I. koreana habitats such as Buan1~6 (BA1~6), Jangseong1~2 (JS1~2) and vegetation characteristics (phytosociological research and ordination analysis), and abiotic environments [soil temperature ($^{\circ}C$), soil humidity (%), transmitted light ($mol{\cdot}m^{-2}{\cdot}d^{-1}$) and canopy openness (%)] were measured. I. koreana was mainly distributed at elevation 50 to 150 m and 2 to $11^{\circ}$ slope. Slope direction was shown as 90 to $193^{\circ}$. The average degree of canopy openness was 11.9%. It showed the highest at BA2 (17.5) and the lowest at JS1 (7.7). The average degree of transmitted light was $6.3mol{\cdot}m^{-2}{\cdot}d^{-1}$. It showed the highest at BA2 (10.1) and the lowest at JS1 (3.6). Population density showed average 25.8 (stems $m^{-2}$). It showed the highest at JS2 (19.7) and the lowest at JS1 (9.3). flowering stems showed average 16.9 (stems). It showed the highest at BA3 (35) and the lowest at BA5 (4). Leaf area size was average $94.1cm^2$.

Exact Solutions of Plasma Diffusion in a Fine Tube Positive Column Discharge (세관 양광주 방전에서 플라즈마 확산의 완전 해)

  • Jin, D.J.;Jeong, J.M.;Kim, J.H.;Hwang, H.C.;Chung, J.Y.;Cho, Y.H.;Lim, H.K.;Koo, J.H.;Choi, E.H.;Cho, G.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.1
    • /
    • pp.36-44
    • /
    • 2010
  • The ambipolar diffusion equation has been solved in a fine-tube lamp of a few mm in diameter. In the diffusion of radial direction, the plasma diffuses and vanishes away at the glass wall by recombination with the characteristic time of plasma loss is given by $\tau_r\;=\;(r_0/2.4)^2/D_a$. With the radius $r_0{\sim}1\;mm$ and the ambipolar diffusion coefficient $D_a{\sim}0.01\;m^2/s$, the vanishing time is calculated $\tau_r{\sim}10\;{\mu}s$ which corresponds to the least value of frequency 30 kHz for the sustaining the plasma in the operation of high voltage AC-power. In the diffusion of longitudinal z-direction, a high density plasma generated at the area of a high voltage electrode, diffuses into the positive column with the characteristic time $\tau_z{\sim}0.1\;s$. The plasma diffusion velocity at the boundary of high density plasma is $u_D{\sim}10^2\;m/s$ at the time $t{\sim}10^{-6}$ s and the diffusion velocity becomes slow as $u_D{\sim}1\;m/s$ at $t{\sim}10^{-3}\;s$. Therefore, for the long lamp of 1 m, it takes about several seconds for the high density plasma at the area of electrode to diffuse through the whole positive column space.

Textural and Geochemical Characteristics of Ferromanganese Crusts from the Lomilik and Litakpooki Seamounts, Marshall Islands, West Pacific (서태평양 마샬제도 Lomilik와 Litakpooki 해저산 망간각의 조직 및 지화학적 특성)

  • Woo, Kyeong-Sik;Park, Sung-Hyun;Jung, Hoi-Soo;Moon, Jai-Yoon;Lee, Kyeong-Yong;Choi, Youn-Ji
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.1
    • /
    • pp.13-26
    • /
    • 2001
  • Six ferromanganese crusts from the Lomilik and Litatfooki seamounts in the Marshall Islands were analyzed for texture, geochemistry and stratigraphy to delineate the paleoceanographic conditions. The crusts can be divided into three layers; 1) outermost massive layer (Layer 1), 2) middle porous Fe-oxides rich layer infllled with biointemal clasts (Layer 2), and 3) innermost massive layer cemented and/or replaced by carbonate fluoapatite (CFA) (Layer 3). The Layer 1 contains higher Mn, Co, Ni, and Mg than other two layers, and the Layer 2 was relatively more enriched in Fe, Al, Ti, Ba, Cu, and Zn. However, the Layer 3 shows higher Ca and P and lower Mn, Fe, Co, and Ni contents than overlying two layers. Based on the Co-chronometry, the crusts are postulated to have begun to grow from 56-31 Ma (early Eocene to Oligocene). The boundaries between layers 1 and 2, and layers 2 and 3 are dated to be 7-3 Ma and 26-14 Ma, respectively. High contents of Ca and P in Layer 3 clearly indicate that the layer had been phosphatized prior to the formation of Layer 2. Considering the well-preserved mjcrostructures in Layer 3, it is unlike that the crusts themselves were recrystallized in suboxic condition. Also, the lower Co concentrations in Layer 3 may imply that the Co supply was not constant during the formation of Layer 3. Layer 2, characterized by the porous texture, grew over Layer 3 during 26-9 Ma. Internal biogenic sediments including foraminifera within the original cavities and the enrichment of organophillic elements such as Ba, Cu, and Zn, suggest that Layer 2 have below high production regions. Also, high content of allumino silicate components may indicate increased terrigeneous input during the formation of Layer 2. The Layer 2. The Layer 1 has been subjected to little diagenetic influence since the Pliocene.

  • PDF

Hydrochemistry and Distribution of Uranium and Radon in Groundwater of the Nonsan Area (논산지역 지하수중 우라늄과 라돈의 수리지질학적 특성과 정밀함량분포)

  • Cho, Byeong Wook;Kim, Moon Su;Kim, Tae Seung;Han, Jin Seok;Yun, Uk;Lee, Byeong Dae;Hwang, Jae Hong;Choo, Chang Oh
    • The Journal of Engineering Geology
    • /
    • v.22 no.4
    • /
    • pp.427-437
    • /
    • 2012
  • A total of 100 groundwater samples were collected from the Nonsan area and the behaviors of uranium and radon as natural radionuclides were investigated with respect to other physicochemical components in the groundwater in order to understand their occurrence, properties, and origins. Radionuclide levels were used to construct detailed concentration maps. The concentration of uranium ranges from 0 to 378 ${\mu}g/L$, with an average of 8.57 ${\mu}g/L$, standard deviation of 42.88 ${\mu}g/L$, and median of 0.56 ${\mu}g/L$. The correlation coefficient between uranium and radon is 0.42, whereas these radionuclides show no relation with other physicochemical components in groundwater. It is noteworthy that the uranium level in most samples (97% of the samples) is less than 30 ${\mu}g/L$, where the bedrock of the aquifer is granite or complex rocks located along the boundary between granite and metamorphic rocks. In the Okcheon metamorphic belt, the uranium concentration of most groundwater is less than 1 ${\mu}g/L$. Radon levels varies from 128 to 9,140 pCi/L, with an average of 2,186 pCi/L, standard deviation of 1,725 pCi/L, and median of 1,805 pCi/L. High radon levels (> 4,000 pCi/L) are most common in regions of Jurassic granite, whereas low radon areas are found in regions of sedimentary rock. In conclusion, the distribution and occurrence of radionuclides are intimately related to the basic geological characteristics of the rocks in which the radiogenic minerals are primarily contained.

A Study on Sea Water and Ocean Current in the Sea Adjacent to Korea Peninsula -The Vertical Structure of Temperatures in the East Sea of Korea- (한반도 근해의 해류 및 해수특성 -한국 동해의 수온의 수직구조-)

  • NA Jung-Yul;LEE Seong-Wook;CHO Kyu-Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.4
    • /
    • pp.215-228
    • /
    • 1991
  • In the East Sea of Korea the vertical structure functions of the temperature field were evaluated and the characteristic thermal zone was classified by the use of the empirical orthogonal function(EOF) method. The East Sea of Korea within the hydrographic lines of 10-107 of the Fisheries Research and Development Agency of Korea(FRDA) can be divided into three thermal regions by the characteristics of the vertical temperature variability. They are the North Korean Cold Current(NKCC) region near the coast which extends parallel to the north-south direction, the Warm-Core(WC) region which dominates almost all the hydrographic stations of the Line 104 of the FRDA and occupies a few stations of the Line-103 and -105 with its axis at the Line 104, and the East Korea Warm Current(EKWC) region which is bisected into the northern and the southern part by the WC region, respectively. Considering the two most important modes, $85.20-98.20\%$ of the total variance of temperature variation are explained in the NKCC region, $85.20-92.90\%$ in the EKWC region, and$85.50-91.70\%$ in the WC region. The first mode has its peak value at the surface with the annual cycle of variation. The spatial pattern of the first mode portrays a coherent vertical variation in the EKWC region and a clear anti-correlation both in the NKCC region and in the WC region where the zero-crossing depths are loom and 200m, respectively. The second mode of the NKCC region is particularly noticeable, haying its peak at loom with coherent vertical variation. To study the time dependency of the vertical structure functions, the extended EOF(EEOF) method was used. The persistence of the first mode is less than 4 months in the study area. The annual variation of the first mode in the NKCC region is different from those in the WC region and in the EKWC region.

  • PDF

Areal Distribution Ratio and Characteristics of Constituent Rocks with Geologic Age and Rock Type by GIS in Gyeongnam-Ulsan-Busan Areas (GIS를 이용한 경남-울산-부산지역 구성암류의 지질시대별 및 암층별 분포율과 분포특성)

  • Yun, Hyun-Soo;Lee, Jin-Young;Hong, Sei-Sun;Yang, Dong-Yoon;Kim, Ju-Yong;Yi, Sang-Heon
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.39-59
    • /
    • 2011
  • To get the geologic information data such as rock resources, industrial ground, development planning and so on, distribution ratios of constituent rocks with geologic age and rock type were obtained in Gyeongnam, Ulsan and Busan areas by ArcGIS 9.3 program, digital geologic and geomorphic maps of 1 : 250,000 scale. Geologic ages and rock types in the Gyeongnam area can be divided into 6 and 40, respectively. Their distribution ratios of the geologic ages are decreasing in the order of Cretaceous, Precambrian, Quaternary, Jurassic, Triassic and Tertiary. They show the wide ranges of 1.35-57.36%, and the former makes the most dominant ratio. Major rock types are 24 ones, all of which occupy the ratio of 94.58% and relatively narrow ranges of 1.15-13.64% in the area. Among them, andesite and andesitic tuff shows the more or less dominant ratio, and separately develops in the northeast, mid east and south parts of the area. In the Ulsan area, geologic ages and rock types can be divided into 3 and II, respectively. Their distribution ratios of the geologic ages are decreasing in the order of Cretaceous, Quaternary and Triassic. They show the very wide range of 6.90-79.21%, and the former makes the most prevailing ratio. Major rock types are 9 ones, which totally occupy the ratio of 98.63% and more or less wide ranges of 1.50-39.01% in the area. Among them, Jindong formation shows the most dominant ratio, and widely develops in the inner and eastern part of the area. In the Busan area, geologic ages and rock types can be divided into 3 and 10, respectively. Their distribution ratios of the geologic ages are decreasing in the order of Cretaceous, Quaternary and Tertiary. They show the wide ranges of 6.73-47.02%, and the two former makes the most dominant ratio of 88.03%. Major rock types are 6 ones, all of which occupy the ratio of 93.02% and relatively wide ranges of 4.07-47.02% in the area. Among them, alluvium forms the most dominant ratio, which mostly develops in the lower Nagdong River, West Nagdong River and Suyeong River.

Transport of Zn Ion under various pH Conditions in a Sandy Soil (사질토양에서의 pH조건에 따른 Zn의 이동특성)

  • Park, Min-Soo;Kim, Dong-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.33-42
    • /
    • 2000
  • Adsorption onto the surfaces of solid particles is a well known phenomenon that causes the retardation effect of heavy metals in soils. For adequate remediation of soil and groundwater contamination, it is important to investigate the mobility of heavy metals that largely depends on pH conditions in the soil water since adsorption of heavy metals is pH-dependent. In this study, we investigated the transport of Zn ion under various pH conditions in a sandy soil by conducting batch and column tests. The batch test was performed using the standard procedure of equilibrating fine fractions collected from the soil with eleven different initial $ZnCl_2$ concentrations, and analysis of Zn ion in the equilibrated solutions using ICP-AES. The column test consisted of monitoring the concentrations of soil solutions exiting the soil column with time known as a breakthrough curve (BTC). We injected respectively $ZnCl_2$ and KCl solutions with the concentration of 10 g/L as a tracer in a square pulse type under three different pH conditions (7.7, 5.8, 4.1) and monitored the flux concentration at the exit boundary using an EC meter and ICP-AES. The resident concentration was also monitored at the 10cm-depth by Time Domain Reflectometry (TDR). The results of batch test showed that ion exchange process between Zn and other cations (Ca, Mg) was predominant. The retardation coefficients obtained from adsorption isotherms (Linear, Freundlich, Langmuir) resulted in the various values ranging from 1.2 to 614.1. No retardation effect but ion exchange was found for the BTCs under all pH conditions. This can be explained by the absence of other cations to desorb Zn ion from soil exchange sites under the conditions of ETC experiment imposing blank water as leachate in steady-state flow. As pH decreased, the peak concentration of Zn increased due to the competition of Zn with hydrogen ions ($H^+$) and the concentrations of other cations decreased. The peak concentration of Zn was increased by 12.7 times as pH decreased from 7.7 to 4.1.

  • PDF

Psychology and Quality of Life in Cancer Patients on Radiation Therapy (방사선치료 중인 암 환자의 심리와 삶의 질)

  • Yang Jong-Chul;Chung Woong-Ki
    • Radiation Oncology Journal
    • /
    • v.22 no.4
    • /
    • pp.271-279
    • /
    • 2004
  • Purpose: The object of this study Is to investigate sociodemographic and clinical characteristics, psychology, self-esteem and quality of life in cancer patients on radiation therapy and to provide useful information for therapeutic approach to cancer patients on radiation therapy. Materials and Methods: The subjects were 36 patents who had been treated with radiation therapy and 20 normal people. Sociodemographic information and clinical characteristics of cancer patients on radiation therapy were investigated, and symptom checklist-90-revised, Rosenberg Self-esteem Scale for self esteem, World Health Organization Quality of Life Assessment Instrument for quality of life were administered to subjects. And Spearman's correlation analysis was used among these. Result : The tendency of somatization, depression, anxiety and hostility in cancer group were significantly higher than normal group. Self esteem and quality of life in cancer group were significantly lower than normal group. No significant difference was found in comparison of psychology, self esteem and qualify on life according to sociodemographic variables. Among clinical characteristics, in the presence of metastasis in cancer patients, the scores of anxiety, phobia and paranoid ideation were higher In patients with pain, the score of somatization was higher And in case of weight loss, the score of somatization was higher. The higher score of depression, anxiety and hostility were significantly associated with lower self-esteem. And higher score of somatization, depression, anxiety and hostility were significantly associated with lower quality of life. Conclusion: Understanding and management of psychological symptoms, such as somatization, depression, anxiety, and hostility, and pain control are necessary to improve quality of life in cancer patients on radiation therapy.