• Title/Summary/Keyword: 경계 적분법

Search Result 186, Processing Time 0.021 seconds

A Boundary Integral Method for Elastic Shallow Shell (쉘 구조물의 경계적분법)

  • Kim Jin Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.3 s.18
    • /
    • pp.157-164
    • /
    • 2004
  • This is a boundary integral formulation for elastic shallow shell structures subjected to both membrane and bending loads. Fundamental solutions for shell actions are determined from the plate solutions and, finally the corresponding kernel functions for shell BIEs can be constructed. It is illustrated by solving an example of uniform load of spherical cap.

Boundary Integral Equation Method by Cubic Spline (Cubic Spline을 사용한 경계요소법)

  • 서승남
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.1
    • /
    • pp.11-17
    • /
    • 1990
  • Dirichlet boundary value problems originated from unsteady deep water wave propagation are transformed to Boundary Intergral Equation Methods by use of a free surface Green's function and the integral equations are discretized by a cubic spline element method. In order to enhance the stability of the numerical model based on the derived Fredholm integral equation of 1 st kind, the method by Hsiao and MacCamy (1973) is employed. The numerical model is tested against exact solutions for two cases and the model shows very good accuracy.

  • PDF

A Study on the Efficient IFEM for Analyzing an Arbitrary-shaped Iris in Rectangular Waveguide (구형 도파관내 임의 형상 Iris 해석을 위한 효율적인 반복 유한 요소법에 관한 연구)

  • 박종국;김병성;남상욱
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.7
    • /
    • pp.1175-1181
    • /
    • 2001
  • An efficient hybrid method is proposed to analyze discontinuities in a rectangular waveguide. Only with a small number of meshes around a discontinuity, the typical finite element method is shown to give an exact solution through several iterative updates of the boundary conditions. To show the validity of the proposed method, a simple circular aperture in a rectangular waveguide is analyzed and its result is compared with FEBIM.

  • PDF

The Computation of Stress Intensity Factors in Fiberreinforced Composites using a Contour Integral Method (경로적분법에 의한 섬유강화복합재의 응력확대계수 계산)

  • 김진우;장흥석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.1
    • /
    • pp.109-118
    • /
    • 1985
  • 특이응력해석을 위한 일반화된 가역상반일 경계분식이 섬유강화복합재를 모형화한 직교 이방성 크랙평판의 수치해를 위하여 발전시켰다. 이 적분방정식은 평판경계에서의 탄성변위와 트랙션의 변수로 구성된 경계분식의 형태로 하중이 없다는 두 크랙면의 경계조건과 유한의 탄성변형에너지 의 개념에서 경계적 분식에 필요한 특성해를 규정하고 대응되는 보조해를 계산하였다. 직교이방 도를 달리한 중앙크랙평판의 응력확대계수를 계산하여 기존해와 비교하였다. 또한 대칭모우드 I 형의 양측크랙평판 및 복합모우드형 편측크랙 일단고정 평판의 응력확대계수가 임의의 섬유방향 각에 따라서 계산되었다.

A Study on the Boundary Element Method for Numerical Analysis of Nonlinear Free Surface Waves(I) (비선형 자유표면파의 수치해석을 위한 경계요소법에 대한 연구 (I))

  • Sung, Hong G.;Hong, Sa Y.;Choi, Hang S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.4
    • /
    • pp.53-60
    • /
    • 1997
  • Nonlinear free surface flow phenomena have teen studied by several kinds of numerical methods, of which boundary element method has been known as most promising one. There, however, remain many difficulties to be solved in the numerical procedures by boundary element analysis. In this paper, an efficient calculation of elemental integrals and iterative solution algorithm for the resulting system of equations were thoroughly investigated in order to enhance the procedure of the boundary element analysis. Advantages of the herein developed boundary element analysis code are demonstrated in terms of accuracy and convergence for typical boundary-value problems with free surface.

  • PDF

Reliability-based Design Optimization using MD method (곱분해기법을 적용한 신뢰성 기반 최적 설계)

  • Lee, Tae-Hee;Kim, Tae-Kyun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.101-104
    • /
    • 2009
  • 최적설계는 설계자가 요구하는 제한조건을 만족시키는 범위에서 목적함수가 최소가 되는 설계점을 찾는 방법이다. 그러나 기존의 최적설계는 불확실성의 영향을 고려하지 않아 최적해가 제한조건의 경계에 위치하고 이것은 모델링과정이나 가공 등으로 인한 오차에 대한 영향을 고려하지 않는 문제점이 있다. 신뢰성 기반 최적설계는 불확실성을 정량화하면서 신뢰도를 계산하는 신뢰도 해석과정과 최적설계과정을 포함한다. 일반적으로 신뢰성 해석은 크게 추출법, 급속 확률 적분법, 모멘트 기반 신뢰성해석이 있다. 가장 널리 사용되는 급속 확률 적분법 중 최대 손상 가능점(MPP) 방법은 많은 MPP점이 존재하는 경우 수치적 비용이 증가하는 문제점과 표준 정규분포 공간으로 변환하는 과정에서 제한조건의 비선형성을 증가시켜 큰 오차를 발생시키는 문제점이 있다. 본 논문에서는 RBDO를 수행하기에 앞서 선행되어야 할 신뢰성해석 방법으로 곱분해기법을 사용하였고 이로부터 민감도 정보를 유도하여 기울기 기반 최적화 알고리즘을 적용하였다.

  • PDF

Parametric comparative study of Rocket Nozzle Convective Heat Transfer Coefficient Application of Combustion gas characteristic and Method of Analysis (해석방법 및 연소가스특성 적용에 따른 로켓 노즐 대류열전달계수의 매개변수적 비교 고찰)

  • Kim, Yonggu;Bae, Joochan;Kim, Jinok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.651-663
    • /
    • 2017
  • Experimental results of $30^{\circ}-15^{\circ}$ nozzles were compared with numerically calculated convective heat transfer coefficients using FLUENT, Boundary Layer Integration Method and Bartz predictions. Also, the convective heat transfer coefficients were calculated by using FLUENT and boundary layer integration method for NASA HIPPO nozzles according to the characteristics of combustion gas and the correlation between pressure and pressure was compared. Finally, thermal analysis of NASA HIPPO nozzle was performed to compare the ablation thickness and char depth according to the combustion gas characteristics.

  • PDF

Elastic Analysis of Unbounded Solids Using a Mixed Numerical Method (혼합 수치해석 방법을 이용한 무한고체의 탄성해석)

  • Lee , Jung-Ki;Heo, Kang-Il
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.341-348
    • /
    • 2001
  • A Mixed Volume and Boundary Integral Equation Method is applied for the effective analysis of plane elastostatic problems in unbounded solids containing general anisotropic inclusions and voids or isotropic inclusions. It should be noted that this newly developed numerical method does not require the Green's function for anisotropic inclusions to solve this class of problems since only Green's function for the unbounded isotropic matrix is involved in their formulation for the analysis. This new method can also be applied to general two-dimensional elastodynamic and elastostatic problems with arbitrary shapes and number of anisotropic inclusions and voids or isotropic inclusions. Through the analysis of plane elastostatic problems in unbounded isotropic matrix with orthotropic inclusions and voids or isotropic inclusions, it will be established that this new method is very accurate and effective for solving plane elastic problems in unbounded solids containing general anisotropic inclusions and voids or isotropic inclusions.

  • PDF

A Study on Turbulent Boundary Layer around a Two-Dimensional Hydrofoil using LDV System (레이저 유속계를 이용한 2차원날개 단면 주위의 난류경계층 연구)

  • J.W. Ahn;J.T. Lee;K.S. Kim;C.Y. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.146-158
    • /
    • 1991
  • The flow around a two-dimensional foil section Is measured by a LDV(Laser Doppler Velocimetry) system which is capable of measuring the datailed flow field without interfering the original flow field. A 2-color 3-beam LDV system, which is capable of mea,;tiring 2 velocity components simultaneously and uses 2W Ar-Ion laser source, is used to measure the flow field around an NACA0012 foil section. The measured flow velocities are analysed iii order to study the boundary layer characteristics, flow separation and the detail structure of the flow near the trailing edge of the foil. The boundary layer characteristics are compared with the results by the head's momentum integral method. For the case of small angle of attack at relatively higher Reynolds number, both results show good agreements. The measured data of the velocity field around an NACA0012 foil section would be valuable data to validate the CFD(Computational Fluid Dynamic) calculation results. The developed experimental technique to evaluate the characteristics of two-dimensional foil sections is essential tool to develope new blade sections which have good lift characteristics and better cavitation performances.

  • PDF

Volume Integral Equation Method for Multiple Anisotropic Inclusion Problems in an Infinite Solid under Uniaxial Tension (인장 하중을 받는 무한 고체에 포함된 다수의 이방성 함유체 문제 해석을 위한 체적 적분방정식법)

  • Lee, Jung-Ki
    • Composites Research
    • /
    • v.23 no.4
    • /
    • pp.7-13
    • /
    • 2010
  • A volume integral equation method (VIEM) is introduced for the solution of elastostatic problems in an unbounded isotropic elastic solids containing interacting multiple anisotropic inclusions subject to remote uniaxial tension. The method is applied to two-dimensional problems involving long parallel cylindrical inclusions. A detailed analysis of stress field at the interface between the matrix and the central inclusion is carried out for square and hexagonal packing of the inclusions. Effects of the number of anisotropic inclusions and various fiber volume fractions on the stress field at the interface between the matrix and the central inclusion are also investigated in detail. The accuracy of the method is validated by solving the single inclusion problem for which solutions are available in the literature.