본 논문에서는 범죄수사의 초동수사 기법으로 사용되고 있는 몽타주와 실물 사진과의 근사 영상 검색 알고리즘을 제안한다. 입력 몽타주를 얼굴인식 기법에 적용하여 이진영상화와 형태학적 필터로 영상의 잡음을 제거한 후 경계선을 추출하였다. 추출된 경계선 영상으로 레이블링 과정을 거친 후 얼굴의 중요 요소를 포함하는 특징얼굴을 구성한다. 특징얼굴은 웨이블릿 변환을 통해 다운 샘플링 된 LL대역의 계수로 변환되며, 고유값 연산을 통해 계수 매트릭스의 고유 값을 추출 한다. 입력 몽타주의 고유값은 같은 절차를 거친 실물 사진의 저장된 고유값과 계수의 분포를 비교한다. 실험 결과 몽타주와 유사한 실물 사진을 검색할 수 있었으며 영상의 크기 변화와 왜곡 및 압축에 견고한 비교 검색 결과를 얻었다.
본 논문에서는 무제한 음성 생성을 위한 단위음성으로서의 다이폰을 2음절 자연음성으로부터 자동 추출하는 알고리즘을 제안한다. 입력음성을 개량 켑스트럼 파라미터로 분석하여 이로부터 다이폰 추출 파라미터들을 도출한다. 제안된 파라미터로는 에너지 레벨을 나타내는 0차 켑스트럼의 동적변화량, 스펙트럼의 시간 변화량 영교차율, 캡스트럼의 유클리디안 거리이다. 스펙트럼 포락의 변화가 완만한 모음 연쇄등의 음소 경계를 보다 효율적으로 검출하기 위해 스펙트럼의 시간 변화를 미세부분과 개형부분으로 나누어 각각을 파라미터로 사용한다. VV(모음연쇄), VCV(C: 반모음, 자음), VCCV형들로 이루어진 2음절 단어들에 대해 실험한 결과, 모음연쇄 등이 포함되어 있음에도 약 85% 정확도의 음소경계검출을 얻었다. 본 논문에 의한 다이폰을 이용한 합성음의 청취실험 결과 명료도가 높음을 확인하였다.
목적: PET과 MR 영상을 체계적으로 합성i분석하여 각각의 영상기법이 갖는 단점을 보완하고 기능을 향상시킴으로써 보다 정확하고 유용한 임상정보를 얻을 수 있다. 두 영상을 공간적으로 합성하기 위해서 머리 표피 경계점들 간의 거리를 최소화하는 알고리즘을 이용할 경우 경계점 추출의 정확성 및 견실성과 거리 계산 속도가 합성 알고리즘의 성능을 결정하는 중요한 요소가 된다. 본 연구에서는 PET 영상의 경계 추출과 거리 계산 방법을 개선하고 이를 이용하여 PET과 MR 영상을 3차원적으로 합성하였다. 대상 및 방법: 공간적인 합성을 위한 영상처리기법의 핵심인 경계점 추출을 위해 PET영상에서는 방출스캔 sinogram의 경계를 강조한 후 재구성한 횡단면으로부터 2 mm 간격으로 머리 표피 경계점들을 추출하였으며 MR 영상에서는 각 횡단면마다 약 2도 간격으로 경계점들을 추출하였다. 두 영상의 모든 경계점들 간의 평균 유클리디안 거리를 최소화하는 3차원 가상공간 상에서의 위치 이동과 회전 각도를 최소자승법을 이용하여 구한 후 PET영상을 역 전환하여 위치 정합을 하였다. 평균 거리의 계산 속도를 향상시키기 위하여 고정된 대상의 각 경계점을 중심으로 하여 주변 공간 정들에서의 거리를 순차적으로 계산하고 이들의 최소값을 취하는 방법으로 거리지도를 구성하였으며 최소자승법에서 경계점들 간의 위치가 변할 때마다 매번 평균거리를 다시 계산하지 않고 거리지도를 참조하여 평균 거리를 산출하는 방법을 사용하였다. 위치 정합된 두 영상의 동시 표현을 위하여 PET 영상의 화소값에 $0.4{\sim}0.7$부터 1사이의 범위로 정규화된 MR 영상의 화소 값으로 가중치를 주는 가중정규화 방법을 사용하였다. 결과: 방출스캔의 sinogram을 이용함으로써 PET영상의 경계를 견실하게 추출할 수 있었으며, 거리지도를 이용하여 거리 계산을 한 결과 계산 속도를 향상시킬 수 있었다. 정상인의 뇌영상에 대해 위치 정합을 실시한 결과 평균 거리 오차는 2mm 이하였다. 가중정규화 방법을 사용하였을 때 합성된 영상의 정성적인 식별 명확도가 향상하였다. 결론: 견실한 PET 영상 경계점 추출과 거리지도를 이용한 계산 속도의 향상을 통해 뇌 PET과 MR 영상 합성기법의 성능을 개선할 수 있었으며 이를 이용하며 개발한 영상정합 프로그램은 임상 환경에서 유용하게 사용될 수 있을 것이다.
본 연구에서는 뉴우턴법과 모멘트를 이용한 수정된 고정점 알고리즘의 독립성분분석기법을 이용한 영상의 특징추출을 제안하였다. 여기서 뉴우턴법은 엔트로피 최적화로부터 유도된 기법으로 그 계산을 간략화하여 역혼합행렬의 빠른 경신을 위함이고, 모멘트는 접선을 구하는 과정에서 함수의 기울기변화 계산에서 발생하는 발진을 줄여 좀 더 빠른 학습을 위함이다. 제안된 기법을 13개 자연영상들로부터 선택된 12×12 픽셀(pixel)의 10,000개 패치를 대상으로 시뮬레이션 한 결과, 추출된 16×16픽셀의 160개 독립성분 기저벡터 각각은 자연영상들에 포함된 공간적인 주파수 특성과 방향성을 가지는 경계 특성이 잘 드러나는 국부적인 특징들임을 확인할 수 있었다. 또한 모멘트의 이용으로 개선된 특징추출을 얻을 수 있었다.
샷 경계 검출(Shot Boundary Detection)은 영상 콘텐츠 분석을 위한 필수적인 기술이며, 다양한 방식으로 편집된 영상의 샷 경계를 정확하게 검출하기 위한 연구가 지속되어 왔다. 그러나 기존에 연구들은 고정된 샷 경계 검출 알고리즘이나 매뉴얼한 작업과 같이 학습이 불가능한 과정이 포함되어 있어 성능 개선에 한계가 있었다. 본 논문에서는 이러한 과정을 제거한 End-to-End 모델을 제안한다. 제안하는 모델은 시공간 정보 추출성능을 높이기 위해 행동 인식 데이터셋을 이용한 전이학습을 사용하고, 샷 경계 검출 성능을 높이기 위해 개선된 지식의 증류기법(Knowledge Distillation)을 결합한다. 제안하는 모델은 ClipShots 데이터셋에서 DeepSBD 에 비해 cut transition 과 gradual transition 이 각각 5.4%, 41.29% 높은 성능을 보였고, DSM 과의 비교에서 cut transition 의 정확도가 1.3% 더 높은 결과를 보였다.
본 논문에서는 수평 방향의 경계선 정보를 이용한 마모 정도 및 편마모 검출 알고리즘을 제안한다. 입력 이미지의 노이즈는 양방향 필터로 제거한 다음 제안된 마스크를 사용하여 필터링된 이미지에서 경계선이 추출된다. 타이어가 마모됨에 따라, 타이어 숄더 또는 타이어 바퀴의 바닥에 팬 홈이 수직 홈보다 더 많이 바뀐다. 그러므로 타이어 숄더 또는 타이어 홈의 모서리는 수직 홈의 모서리보다 타이어 장착에 대한 정보가 더 많다. 제안 된 마스크는 이 특징을 반영하여 수평 모서리 추출에 사용된다. 경계선 추출 후, 경계선 이미지는 두 가지 레벨 시스템으로 표현된다. 이진화 이미지의 경계선 화소는 착용도 및 불균일한 착용을 결정하는 데 사용된다. 이 제안 된 방법은 다른 장비 없이 쉽게 사용할 수 있다. 제안 된 방법은 실제 차량을 사용하여 수행되었으며, 실험 결과는 착용도 및 착용 불균일성을 검출하는데 있어 제안 된 방법의 우수한 성능을 보여준다.
본 논문에서는 복부 초음파 영상에서 Ends_in Search Stretching 기법을 적용하여 명암 대비를 강조한 후, 이진화, 영역 레이블링 기법, 잡음 제거를 통해 근막을 추출하고, 근막 영역의 하단 경계선을 기준으로 Cubic Spline 보간법을 적용하여 복부 근육의 근막 하단 영역을 추출한다. 복부 초음파 영상에서 추출된 근막 하단 영역을 이용하여 근막 영역을 제거한 후, 거리 기반 퍼지 ART 알고리즘을 적용하여 충수 후보 영역을 추출한 다. 추출된 충수 후보 영역에 침식 연산과 영역 레이블링 기법을 적용하여 충수를 추출한다. 제안된 방법을 복부 초음파 영상을 대상으로 실험한 결과, 기존의 충수 추출 방법보다 객관적이고 효율적으로 충수와 소장의 명암도 차이를 구별할 수 있어 충수 영역이 이전의 방법 보다 비교적 정확히 추출되는 것을 영상의학과 관련 전문의를 통해 확인하였다.
본 논문은 모터 샤프트 제조 공정에서 발생하는 이중컷 불량을 검사하기 위한 영상 처리 알고리즘을 제안하였다. 알고리즘은 영상의 밝기를 이용하여 외곽선을 추출하는 단계와 추출된 외곽선을 이용하여 이진화된 경계선 그래프를 구하는 단계, 최종적으로 이진화된 경계선 그래프를 이용하여 불량품을 판정하는 단계로 구성된다. 본 논문에서는 두 절단면이 분리되어 있는 결함과 두 절단면이 연결되어 있는 결함을 각각 type 1 결함과 type 2 결함이라고 정의하였다. 실제 제조 과정에서 112개의 양품과 44개의 불량품 (type 1 불량 34개 및 type 2 불량 10개) 샘플을 수집하였으며, 수집한 샘플을 이용하여 제안된 알고리즘을 검증하였다. 알고리즘 시험 결과 100% 정확도로 양품과 불량품을 판정하였으며, 불량품의 경우도 type 1 불량과 type 2 불량을 정확히 구분하는 것으로 확인되었다. 본 논문에서 제안한 알고리즘은 추가적으로 다양한 샘플에 대해 신뢰성을 확보한 후 실제 현장에 사용할 계획이다.
항공사진이나 LiDAR 데이터를 이용하여 건물의 자동 추출에 있어서 많은 연구가 이루어졌지만, 3차원 위치정보와 영상의 형상정보라는 두 데이터의 장점을 융합하여 정확도를 향상시킬 수 있다. 이를 위하여 본 연구에서는 등고선 기반의 건물인식 알고리즘을 사용하여 LiDAR 데이터를 이용한 건물 인식 정확도를 향상시키고, 항공사진을 이용하여 건물 경계의 정교화도 추구하였다. 등고선기반 건물 인식 방법은 건물의 경계와 지붕구조물 정보를 생성할 수 있으며, 기존 TIN기반 인식 방법이나 NDSM기반 방법보다 우수한 건물 탐지 정확도를 보여주었다. 등고선으로 추정된 건물경계에 일정한 크기의 버퍼를 생성하여 항공사진의 경계영역을 한정시키고, double active contour를 사용하여 항공사진의 에지에 맞도록 건물경계를 정교화 하였다. 본 연구성과를 이용하여 향후 추출된 개체 경계의 일정 범위에서 최적의 정합을 수행하여 3차원 건물 경계를 생성할 수 있다.
본 논문은 Gabor 웨이브렛 변환을 이용하여 무표정을 포함한 표정영상에서 얼굴의 주요 요소들의 경계선을 추출한 후, FCM 군집화 알고리즘을 적용하여 무표정 영상에서 저차원의 대표적인 특징점을 추출한다. 무표정 영상의 특징점들은 표정영상의 특징점들을 추출하기 위한 템플릿으로 사용되어지며, 표정영상의 특징점 추출은 무표정 영상의 특징점과 동적 연결모형을 이용하여 개략적인 정합과 정밀한 정합 과정의 두단계로 이루어진다. 본 논문에서는 Gabor 웨이브렛과 FCM 군집화 알고리즘을 기반으로 동적 연결모형을 이용하여 표정영상에서 특징점들을 자동으로 추출할 수 있음을 제시한다. 본 연구결과는 자동 특징추출을 이용한 차원모형기반 얼굴 표정인식[1]에서 얼굴표정의 특징점을 자동으로 추출하는 데 적용되었다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.