• Title/Summary/Keyword: 경계추출 알고리즘

Search Result 250, Processing Time 0.029 seconds

Ellipse detection based on RANSAC algorithm (RANSAC 알고리듬을 적용한 타원 검출)

  • Ye, Sao-Young;Nam, Ki-Gon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.1
    • /
    • pp.27-32
    • /
    • 2013
  • It plays an important role to detect the shape of an ellipse in many application areas of image processing. But it is very difficult to detect the ellipse in the real image because the noise was involved in the image, other objects obscured the ellipse or the ellipses were overlap with each other. In this paper, we extract the boundary (edge) to detect ellipse in the image and perform the grouping process in order to reduce amount of information. As a result, the speed of the ellipse detection was improved. Also in order to the ellipse detection, we selected the five ellipse parameters at random And then to select the optimal parameters of the ellipse, the linear least-squares approximation is applied. To verify the ellipse detection, RANSAC algorithm is applied. After the algorithm proposed in this study was implemented, the results applied to the real images showed an aocuracy of 75% and speed was very fast to compared with other researches. It mean that the proposed algorithm was valuable to detect the ellipses in the image.

Reliability-based Design Optimization using Multiplicative Decomposition Method (곱분해기법을 이용한 신뢰성 기반 최적설계)

  • Kim, Tae-Kyun;Lee, Tae-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.299-306
    • /
    • 2009
  • Design optimization is a method to find optimum point which minimizes the objective function while satisfying design constraints. The conventional optimization does not consider the uncertainty originated from modeling or manufacturing process, so optimum point often locates on the boundaries of constraints. Reliability based design optimization includes optimization technique and reliability analysis that calculates the reliability of the system. Reliability analysis can be classified into simulation method, fast probability integration method, and moment-based reliability method. In most generally used MPP based reliability analysis, which is one of fast probability integration method, if many MPP points exist, cost and numerical error can increase in the process of transforming constraints into standard normal distribution space. In this paper, multiplicative decomposition method is used as a reliability analysis for RBDO, and sensitivity analysis is performed to apply gradient based optimization algorithm. To illustrate whole process of RBDO mathematical and engineering examples are illustrated.

Secure Self-Driving Car System Resistant to the Adversarial Evasion Attacks (적대적 회피 공격에 대응하는 안전한 자율주행 자동차 시스템)

  • Seungyeol Lee;Hyunro Lee;Jaecheol Ha
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.907-917
    • /
    • 2023
  • Recently, a self-driving car have applied deep learning technology to advanced driver assistance system can provide convenience to drivers, but it is shown deep that learning technology is vulnerable to adversarial evasion attacks. In this paper, we performed five adversarial evasion attacks, including MI-FGSM(Momentum Iterative-Fast Gradient Sign Method), targeting the object detection algorithm YOLOv5 (You Only Look Once), and measured the object detection performance in terms of mAP(mean Average Precision). In particular, we present a method applying morphology operations for YOLO to detect objects normally by removing noise and extracting boundary. As a result of analyzing its performance through experiments, when an adversarial attack was performed, YOLO's mAP dropped by at least 7.9%. The YOLO applied our proposed method can detect objects up to 87.3% of mAP performance.

A Fast Error Concealment Using a Data Hiding Technique and a Robust Error Resilience for Video (데이터 숨김과 오류 내성 기법을 이용한 빠른 비디오 오류 은닉)

  • Kim, Jin-Ok
    • The KIPS Transactions:PartB
    • /
    • v.10B no.2
    • /
    • pp.143-150
    • /
    • 2003
  • Error concealment plays an important role in combating transmission errors. Methods of error concealment which produce better quality are generally of higher complexity, thus making some of the more sophisticated algorithms is not suitable for real-time applications. In this paper, we develop temporal and spatial error resilient video encoding and data hiding approach to facilitate the error concealment at the decoder. Block interleaving scheme is introduced to isolate erroneous blocks caused by packet losses for spatial area of error resilience. For temporal area of error resilience, data hiding is applied to the transmission of parity bits to protect motion vectors. To do error concealment quickly, a set of edge features extracted from a block is embedded imperceptibly using data hiding into the host media and transmitted to decoder. If some part of the media data is damaged during transmission, the embedded features are used for concealment of lost data at decoder. This method decreases a complexity of error concealment by reducing the estimation process of lost data from neighbor blocks. The proposed data hiding method of parity bits and block features is not influence much to the complexity of standard encoder. Experimental results show that proposed method conceals properly and effectively burst errors occurred on transmission channel like Internet.

Hand Region Tracking and Fingertip Detection based on Depth Image (깊이 영상 기반 손 영역 추적 및 손 끝점 검출)

  • Joo, Sung-Il;Weon, Sun-Hee;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.8
    • /
    • pp.65-75
    • /
    • 2013
  • This paper proposes a method of tracking the hand region and detecting the fingertip using only depth images. In order to eliminate the influence of lighting conditions and obtain information quickly and stably, this paper proposes a tracking method that relies only on depth information, as well as a method of using region growing to identify errors that can occur during the tracking process and a method of detecting the fingertip that can be applied for the recognition of various gestures. First, the closest point of approach is identified through the process of transferring the center point in order to locate the tracking point, and the region is grown from that point to detect the hand region and boundary line. Next, the ratio of the invalid boundary, obtained by means of region growing, is used to calculate the validity of the tracking region and thereby judge whether the tracking is normal. If tracking is normal, the contour line is extracted from the detected hand region and the curvature and RANSAC and Convex-Hull are used to detect the fingertip. Lastly, quantitative and qualitative analyses are performed to verify the performance in various situations and prove the efficiency of the proposed algorithm for tracking and detecting the fingertip.

Temporal Urban Growth Monitoring using Landsat Imagery and Pycnophypactic Interpolation Method - The case of Seoul Metropolitan Area - (Landsat 영상과 Pycnophylactic 보간 알고리즘에 의한 도시성장 분석 - 서울-경기 도시지역을 중심으로 -)

  • Chang, Hoon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.2 s.25
    • /
    • pp.17-28
    • /
    • 2003
  • Since 1970s, Seoul Metropolitan Area has been growing in physical and demographic aspect. A number of new urban fringes, New City, had been particularly developed from the early of 1990s. To examine the urban growth, the population density maps are generally used to the efficient urban management tool. The density maps from political boundaries, however, were traditionally used to estimate an urban concentration, there is problems to apply directly to urban management decision making due to (i) the abrupt changes between boundaries and (ii) the inclusion of green areas and forests in these areas. The mass-preserving interpolation method, the Pycnophylactic interpolation, could provide more realistic density maps. In addition, the classified urban areas from satellite images corresponding years would turn out to be more reliable results since populations were only applied to urbanized areas. Even though the Pyconophylactic method makes the density larger, it would be useful to produce a general urban growth trend at large scale. Consequently, four different density maps are compared and reviewed for this study, and the cross-sectional analysis provided to glimpse of population density around the city center.

  • PDF

MCBP Neural Netwoek for Effcient Recognition of Tire Claddification Code (타이어 분류 코드의 효율적 인식을 위한 MCBP망)

  • Koo, Gun-Seo;O, Hae-Seok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.2
    • /
    • pp.465-482
    • /
    • 1997
  • In this paper, we have studied on cinstructing code-recognition shstem by neural network according to a image process taking the DOT classification code stamped on tire surface.It happened to a few problems that characters distorted in edge by diffused reflection and two adjacent characters take the same label,even very sen- sitive to illumination ofr recognition the stamped them on tire.Thus,this paper would propose the algorithm for tire code under being cinscious of these properties and prove the algorithm drrciency with a simulation.Also,we have suggerted the MCBP network composing of multi-linked recognizers of dffcient identify the DOT code being tire classification code.The MCBP network extracts the projection balue for classifying each character's rdgion after taking out the prjection of each chracter's region on X,Y axis,processes each chracters by taking 7$\times$8 normalization.We have improved error rate 3% through the MCBP network and post-process comparing the DOT code Database. This approach has a accomplished that learming time get's improvenent at 60% and recognition rate has become to 95% from 90% than BckPropagation with including post- processing it has attained greate rates of entire of tire recoggnition at 98%.

  • PDF

Regionalization of Extreme Rainfall with Spatio-Temporal Pattern (극치강수량의 시공간적 특성을 이용한 지역빈도분석)

  • Lee, Jeong-Ju;Kwon, Hyun-Han;Kim, Byung-Sik;Yoon, Seok-Yeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1429-1433
    • /
    • 2010
  • 수공구조물의 설계, 수자원 관리계획의 수립, 재해영향 검토 등을 수행할 때, 재현기간에 따른 확률개념의 강우량, 홍수량, 저수량 등을 산정하여 사용하게 되며, 보통 대상지역의 장기 수문관측 자료를 이용하여 수문사상의 확률분포를 산정한 후 재현기간을 연장하여 원하는 설계빈도에 해당하는 양을 추정하게 된다. 미계측지역 또는 관측자료의 보유기간이 짧은 지역의 경우는 지역빈도 분석 결과를 이용하게 된다. 지역빈도해석을 위해서는 강우자료들의 동질성을 파악하는 것이 가장 기본적인 과정이 되며 이를 위해 통계학적인 범주화분석이 선행되어야 한다. 지점 빈도분석의 수문학적 동질성 판별을 위해 L-moment 방법, K-means 방법에 의한 군집분석 등이 주로 사용되며 관측소 위치좌표를 이용한 공간보간법을 적용하여 시각화하고 있다. 강수량은 시공간적으로 변하는 수문변량으로서 강수량의 시간적인 특성 또한 강수량의 특성을 정의하는데 매우 중요한 요소이다. 이러한 점에서 본 연구를 통해 강수지점의 공간적인 좌표 및 강수량의 양적인 범주화에 초점을 맞춘 기존 지역빈도분석의 범주화 과정에 덧붙여 시간적인 영향을 고려할 수 있는 요소들을 결정하고 이를 활용할 수 있는 범주화 과정을 제시하고자 한다. 즉, 극치강수량의 발생 시기에 대한 정량적인 분석이 가능한 순환통계기법을 이용하여 관측 지점별 시간 통계량을 산정하고, 이를 극치강수량과 결합하여 시 공간적인 특성자료를 생성한 후 이를 이용한 군집화 해석 모형을 개발하는데 연구의 목적이 있다. 분석 과정에 있어서 시간속성의 정량화 및 일반화는 순환통계기법을 사용하였으며, 극치강수량과 발생시점의 속성자료는 각각의 평균과 표준편차를 이용하였다. K-means 알고리즘을 이용해 결합자료를 군집화 하고, L-moment 방법으로 지역화 결과에 대한 검증을 수행하였다. 속성 결합 자료의 군집화 효과는 모의데이터 실험을 통해 확인하였으며, 우리 나라의 58개 기상관측소 자료를 이용하여 분석을 수행하였다. 예비해석 단계에서 100회의 군집분석을 통해 평균적인 centroid를 산정하고, 해당 값을 본 해석의 초기 centroid로 지정하여, 변동적인 클러스터링 경향을 안정화시켜 해석이 반복됨에 따라 군집화 결과가 달라지는 오류를 방지하였다. 또한 K-means 방법으로 계산된 군집별 공간거리 합의 크기에 따라 군집번호를 부여함으로써 군집의 번호순서대로 물리적인 연관성이 인접하도록 설정하였으며, 군집간의 경계선을 추출할 때 발생할 수 있는 오류를 방지하였다. 지역빈도분석 결과는 3차원 Spline 기법으로 도시하였다.

  • PDF

Visualization of Korean Speech Based on the Distance of Acoustic Features (음성특징의 거리에 기반한 한국어 발음의 시각화)

  • Pok, Gou-Chol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.3
    • /
    • pp.197-205
    • /
    • 2020
  • Korean language has the characteristics that the pronunciation of phoneme units such as vowels and consonants are fixed and the pronunciation associated with a notation does not change, so that foreign learners can approach rather easily Korean language. However, when one pronounces words, phrases, or sentences, the pronunciation changes in a manner of a wide variation and complexity at the boundaries of syllables, and the association of notation and pronunciation does not hold any more. Consequently, it is very difficult for foreign learners to study Korean standard pronunciations. Despite these difficulties, it is believed that systematic analysis of pronunciation errors for Korean words is possible according to the advantageous observations that the relationship between Korean notations and pronunciations can be described as a set of firm rules without exceptions unlike other languages including English. In this paper, we propose a visualization framework which shows the differences between standard pronunciations and erratic ones as quantitative measures on the computer screen. Previous researches only show color representation and 3D graphics of speech properties, or an animated view of changing shapes of lips and mouth cavity. Moreover, the features used in the analysis are only point data such as the average of a speech range. In this study, we propose a method which can directly use the time-series data instead of using summary or distorted data. This was realized by using the deep learning-based technique which combines Self-organizing map, variational autoencoder model, and Markov model, and we achieved a superior performance enhancement compared to the method using the point-based data.

A Study on the Development of Topographical Variables and Algorithm for Mountain Classification (산지 경계 추출을 위한 지형학적 변수 선정과 알고리즘 개발)

  • Choi, Jungsun;Jang, Hyo Jin;Shim, Woo Jin;An, Yoosoon;Shin, Hyeshop;Lee, Seung-Jin;Park, Soo Jin
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.3
    • /
    • pp.1-18
    • /
    • 2018
  • In Korea, 64% of the land is known as mountain area, but the definition and classification standard of mountain are not clear. Demand for utilization and development of mountain area is increasing. In this situation, the unclear definition and scope of the mountain area can lead to the destruction of the mountain and the increase of disasters due to indiscreet permission of forestland use conversion. Therefore, this study analyzed the variables and criteria that can extract the mountain boundaries through the questionnaire survey and the terrain analysis. We developed a mountain boundary extraction algorithm that can classify topographic mountain by using selected variables. As a result, 72.1% of the total land was analyzed as mountain area. For the three catchment areas with different mountain area ratio, we compared the results with the existing data such as forestland map and cadastral map. We confirmed the differences in boundary and distribution of mountain. In a catchment area with predominantly mountainous area, the algorithmbased mountain classification results were judged to be wider than the mountain or forest of the two maps. On the other hand, in the basin where the non-mountainous region predominated, algorithm-based results yielded a lower mountain area ratio than the other two maps. In the two maps, we was able to confirm the distribution of fragmented mountains. However, these areas were classified as non-mountain areas in algorithm-based results. We concluded that this result occurred because of the algorithm, so it is necessary to refine and elaborate the algorithm afterward. Nevertheless, this algorithm can analyze the topographic variables and the optimal value by watershed that can distinguish the mountain area. The results of this study are significant in that the mountain boundaries were extracted considering the characteristics of different mountain topography by region. This study will help establish policies for stable mountain management.