• Title/Summary/Keyword: 경계선 추적 알고리즘

Search Result 29, Processing Time 0.021 seconds

An Ellipse Fitting based Algorithm for Separating Overlapping Cells (겹친 세포 분리를 위한 타원 근사 기반 알고리즘)

  • Cho, Mi-Gyung;Shim, Jae-Sool
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.909-912
    • /
    • 2012
  • An automated cell tracking system is automatically to analyze and track changes of cell behaviors in time-lapse cell images acquired from microscope in the cell culture. In this paper, we proposed and developed an ellipse fitting based algorithm for separating very small size overlapping cells in a cell image consisted of thousands or ten thousands cells. We were extracted contours of clusters and divided them into line segments and then produced their fitted ellipses for each line segment. By experimentations, our algorithm was separated clusters with average 91% precision for two overlapping cells and average 84% precision for three overlapping cells respectively.

  • PDF

A Improved Equivalent Table Algorithm for Connected Region Labeling (연결 영역의 라벨링을 위한 동치테이블 개선 알고리즘)

  • Oh, Choonsuk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.261-264
    • /
    • 2019
  • There is the boundary following algorithm called by blob coloring or connected region labeling, which means that each pixel of the internal region can be filled with group label values by the raster scanning. This process represents to assigns the individual label value to each region. In this paper an improved equivalent table algorithm to be simpler and faster than the previous tangled complex labelling algorithm will be proposed when grouping different labels to the same region. 8 steps algorithms for grouping in the equivalent table will be presented and the yielding results will be shown.

Developing Operator and Algorithm for Road Automated Recognition (도로 자동인식을 위한 연산자 및 알고리즘 개발)

  • Lim, In-Seop;Choi, Seok-Keun;Lee, Jae-Kee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.3 s.21
    • /
    • pp.41-51
    • /
    • 2002
  • Recently, many studies extracting the geography information using digital aerial image have been implemented. But it is very difficult that automatically recognizing objects using edge detection method on the aerial image, and so that work have practiced manually or semi-automatically. Therefore, in this study, we have removed impedimental elements for recognition using the image which overlapped the significant information bands of brightness-sliced aerial images, then have developed the algorithm which can automatically recognize and extract road information and we will try to apply that method when we develope a system. For this, first of all, we have developed the 'template conformal-transformation moving operator' for automatically recognizing crosswalk area from crosswalk band image and the 'window normal search algorithm' which is able to track road area based on long-side length of crosswalk, so that we have proposed the method that can extract directly the road information from the aerial image.

  • PDF

Noise Removal Filter Algorithm using Spatial Weight in AWGN Environment (화소값 분포패턴과 가중치 마스크를 사용한 AWGN 제거 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.428-430
    • /
    • 2022
  • Image processing is playing an important part in automation and artificial intelligence systems, such as object tracking, object recognition and classification, and the importance of IoT technology and automation is emphasizing as interest in automation increases. However, in a system that requires detailed data such as an image boundary, a precise noise removal algorithm is required. Therefore, in this paper, we propose a filtering algorithm based on the pixel value distribution pattern to minimize the information loss in the filtering process. The proposed algorithm finds the distribution pattern of neighboring pixel values with respect to the pixel values of the input image. Then, a weight mask is calculated based on the distribution pattern, and the final output is calculated by applying it to the filtering mask. The proposed algorithm has superior noise removal characteristics compared to the existing method and restored the image while minimizing blurring.

  • PDF

Flame Detection Using Haar Wavelet and Moving Average in Infrared Video (적외선 비디오에서 Haar 웨이블릿과 이동평균을 이용한 화염검출)

  • Kim, Dong-Keun
    • The KIPS Transactions:PartB
    • /
    • v.16B no.5
    • /
    • pp.367-376
    • /
    • 2009
  • In this paper, we propose a flame detection method using Haar wavelet and moving averages in outdoor infrared video sequences. Our proposed method is composed of three steps which are Haar wavelet decomposition, flame candidates detection, and their tracking and flame classification. In Haar wavelet decomposition, each frame is decomposed into 4 sub- images(LL, LH, HL, HH), and also computed high frequency energy components using LH, HL, and HH. In flame candidates detection, we compute a binary image by thresholding in LL sub-image and apply morphology operations to the binary image to remove noises. After finding initial boundaries, final candidate regions are extracted using expanding initial boundary regions to their neighborhoods. In tracking and flame classification, features of region size and high frequency energy are calculated from candidate regions and tracked using queues, and we classify whether the tracked regions are flames by temporal changes of moving averages.

A Robust Marker Detection Algorithm Using Hybrid Features in Augmented Reality (증강현실 환경에서 복합특징 기반의 강인한 마커 검출 알고리즘)

  • Park, Gyu-Ho;Lee, Heng-Suk;Han, Kyu-Phil
    • The KIPS Transactions:PartA
    • /
    • v.17A no.4
    • /
    • pp.189-196
    • /
    • 2010
  • This paper presents an improved marker detection algorithm using hybrid features such as corner, line segment, region, and adaptive threshold values, etc. In usual augmented reality environments, there are often marker occlusion and poor illumination. However, existing ARToolkit fails to recognize the marker in these situations, especially, partial concealment of marker by user, large change of illumination and dim circumstances. In order to solve these problems, the adaptive threshold technique is adopted to extract a marker region and a corner extraction method based on line segments is presented against marker occlusions. In addition, a compensating method, corresponding the marker size and center between registered and extracted one, is proposed to increase the template matching efficiency, because the inside marker size of warped images is slightly distorted due to the movement of corner and warping. Therefore, experimental results showed that the proposed algorithm can robustly detect the marker in severe illumination change and occlusion environment and use similar markers because the matching efficiency was increased almost 30%.

The Obstacle Avoidance Algorithm of Mobile Robot using Line Histogram Intensity (Line Histogram Intensity를 이용한 이동로봇의 장애물 회피 알고리즘)

  • 류한성;최중경;구본민;박무열;방만식
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.8
    • /
    • pp.1365-1373
    • /
    • 2002
  • In this paper, we present two types of vision algorithm that mobile robot has CCD camera. for obstacle avoidance. This is simple algorithm that compare with grey level from input images. Also, The mobile robot depend on image processing and move command from PC host. we has been studied self controlled mobile robot system with CCD camera. This system consists of digital signal processor, step motor, RF module and CCD camera. we used wireless RF module for movable command transmitting between robot and host PC. This robot go straight until recognize obstacle from input image that preprocessed by edge detection, converting, thresholding. And it could avoid the obstacle when recognize obstacle by line histogram intensity. Host PC measurement wave from various line histogram each 20 pixel. This histogram is (x, y) value of pixel. For example, first line histogram intensity wave from (0, 0) to (0, 197) and last wave from (280, 0) to (2n, 197. So we find uniform wave region and nonuniform wave region. The period of uniform wave is obstacle region. we guess that algorithm is very useful about moving robot for obstacle avoidance.

A Passport Recognition and face Verification Using Enhanced fuzzy ART Based RBF Network and PCA Algorithm (개선된 퍼지 ART 기반 RBF 네트워크와 PCA 알고리즘을 이용한 여권 인식 및 얼굴 인증)

  • Kim Kwang-Baek
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.1
    • /
    • pp.17-31
    • /
    • 2006
  • In this paper, passport recognition and face verification methods which can automatically recognize passport codes and discriminate forgery passports to improve efficiency and systematic control of immigration management are proposed. Adjusting the slant is very important for recognition of characters and face verification since slanted passport images can bring various unwanted effects to the recognition of individual codes and faces. Therefore, after smearing the passport image, the longest extracted string of characters is selected. The angle adjustment can be conducted by using the slant of the straight and horizontal line that connects the center of thickness between left and right parts of the string. Extracting passport codes is done by Sobel operator, horizontal smearing, and 8-neighborhood contour tracking algorithm. The string of codes can be transformed into binary format by applying repeating binary method to the area of the extracted passport code strings. The string codes are restored by applying CDM mask to the binary string area and individual codes are extracted by 8-neighborhood contour tracking algerian. The proposed RBF network is applied to the middle layer of RBF network by using the fuzzy logic connection operator and proposing the enhanced fuzzy ART algorithm that dynamically controls the vigilance parameter. The face is authenticated by measuring the similarity between the feature vector of the facial image from the passport and feature vector of the facial image from the database that is constructed with PCA algorithm. After several tests using a forged passport and the passport with slanted images, the proposed method was proven to be effective in recognizing passport codes and verifying facial images.

  • PDF

Development of the Algorithm for Traffic Accident Auto-Detection in Signalized Intersection (신호교차로 내 실시간 교통사고 자동검지 알고리즘 개발)

  • O, Ju-Taek;Im, Jae-Geuk;Hwang, Bo-Hui
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.97-111
    • /
    • 2009
  • Image-based traffic information collection systems have entered widespread adoption and use in many countries since these systems are not only capable of replacing existing loop-based detectors which have limitations in management and administration, but are also capable of providing and managing a wide variety of traffic related information. In addition, these systems are expanding rapidly in terms of purpose and scope of use. Currently, the utilization of image processing technology in the field of traffic accident management is limited to installing surveillance cameras on locations where traffic accidents are expected to occur and digitalizing of recorded data. Accurately recording the sequence of situations around a traffic accident in a signal intersection and then objectively and clearly analyzing how such accident occurred is more urgent and important than anything else in resolving a traffic accident. Therefore, in this research, we intend to present a technology capable of overcoming problems in which advanced existing technologies exhibited limitations in handling real-time due to large data capacity such as object separation of vehicles and tracking, which pose difficulties due to environmental diversities and changes at a signal intersection with complex traffic situations, as pointed out by many past researches while presenting and implementing an active and environmentally adaptive methodology capable of effectively reducing false detection situations which frequently occur even with the Gaussian complex model analytical method which has been considered the best among well-known environmental obstacle reduction methods. To prove that the technology developed by this research has performance advantage over existing automatic traffic accident recording systems, a test was performed by entering image data from an actually operating crossroad online in real-time. The test results were compared with the performance of other existing technologies.