• Title/Summary/Keyword: 결합형태소 자동생성

Search Result 10, Processing Time 0.019 seconds

Automatic Generation of Concatenate Morphemes for Korean LVCSR (대어휘 연속음성 인식을 위한 결합형태소 자동생성)

  • 박영희;정민화
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.407-414
    • /
    • 2002
  • In this paper, we present a method that automatically generates concatenate morpheme based language models to improve the performance of Korean large vocabulary continuous speech recognition. The focus was brought into improvement against recognition errors of monosyllable morphemes that occupy 54% of the training text corpus and more frequently mis-recognized. Knowledge-based method using POS patterns has disadvantages such as the difficulty in making rules and producing many low frequency concatenate morphemes. Proposed method automatically selects morpheme-pairs from training text data based on measures such as frequency, mutual information, and unigram log likelihood. Experiment was performed using 7M-morpheme text corpus and 20K-morpheme lexicon. The frequency measure with constraint on the number of morphemes used for concatenation produces the best result of reducing monosyllables from 54% to 30%, bigram perplexity from 117.9 to 97.3. and MER from 21.3% to 17.6%.

Automatic Generatio of Korean Pronunciation Variants (TTS 시스템을 위한 한국어 발음열 자동 생성)

  • 차선화
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.08a
    • /
    • pp.413-418
    • /
    • 1998
  • 음성 합성 시스템의 한 모듈로서 한국어 문자열을 음소열로 자동 변환하는 시스템을 구현하였다. 문자열을 음소열로 변환할 때에는 한국어 음운현상에 대한 체계적인 분석 과정이 필요하다. 한국어의 음운 변화 현상은 단일 형태소 내부와 여러 형태소가 결합하여 한 어절을 이루는 경우 그 형태소 경계, 그리고 어절 경계에서 서로 다른 음운규칙이 적용된다. 따라서 언절이나 문장 등의 입력을 음소열로 변환하기 위해서는 형태소 분석, 태깅작업이 반드시 수행되어야 올바른 발음열을 유도할 수 있다. 본 논문에서 제안한 시스템은 한국어의 형태음운현상을 반영하기 위해 형태소 분석을 선행한 후, 한국어에서 빈번하게 발생하는 음운 변화 현상의 분석을 통해 정의된 음소 변동 규칙과 변이음 규칙을 선택적으로 적용하여 형태소, 어절, 언절 또는 문장 등의 다양한 형태의 입력에 대해 발음열을 생성한다. 기존의 연구에서 분리되어 있던 형태소 태거와 변환시스템을 통합하여 사용자 편의성을 높였으며 텍스트 기반의 형태소 분석기를 사용하기 때문에 원형이 복원되는 형태소들에 대한 처리 루틴을 두어 오류를 감소 시켰다.

  • PDF

Automatic Generation of Domain-Dependent Pronunciation Lexicon with Data-Driven Rules and Rule Adaptation (학습을 통한 발음 변이 규칙 유도 및 적응을 이용한 영역 의존 발음 사전 자동 생성)

  • Jeon, Je-Hun;Chung, Min-Hwa
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2005.05a
    • /
    • pp.233-238
    • /
    • 2005
  • 본 논문에서는 학습을 이용한 발음 변이 모델링을 통해 특정 영역에 최적화된 발음 사전 자동 생성의 방법을 제시하였다. 학습 방법을 이용한 발음 변이 모델링의 오류를 최소화 하기 위하여 본 논문에서는 발음 변이 규칙의 적응 기법을 도입하였다. 발음 변이 규칙의 적응은 대용량 음성 말뭉치에서 발음 변이 규칙을 유도한 후, 상대적으로 작은 용량의 음성 말뭉치에서 유도한 규칙과의 결합을 통해 이루어 진다. 본 논문에서 사용된 발음 사전은 해당 형태소의 앞 뒤 음소 문맥의 음운 현상을 반영한 발음 사전이며, 학습 방법으로 얻어진 발음 변이 규칙을 대용량 문자 말뭉치에 적용하여 해당 형태소의 발음을 자동 생성하였다. 발음 사전의 평균 발음의 수는 적용된 발음 변이 규칙의 확률 값들의 한계 값 조정에 의해 이루어졌다. 기존의 지식 기반의 발음 사전과 비교 할 때, 본 방법론으로 작성된 발음 사전을 이용한 대화체 음성 인식 실험에서 0.8%의 단어 오류율(WER)이 감소하였다. 또한 사전에 포함된 형태소의 평균 발음 변이 수에서도 기존의 방법론에서 보다 5.6% 적은 수에서 최상의 성능을 보였다.

  • PDF

Automatic Generation of Pronunciation Variants for Korean Continuous Speech Recognition (한국어 연속음성 인식을 위한 발음열 자동 생성)

  • 이경님;전재훈;정민화
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.35-43
    • /
    • 2001
  • Many speech recognition systems have used pronunciation lexicon with possible multiple phonetic transcriptions for each word. The pronunciation lexicon is of often manually created. This process requires a lot of time and efforts, and furthermore, it is very difficult to maintain consistency of lexicon. To handle these problems, we present a model based on morphophon-ological analysis for automatically generating Korean pronunciation variants. By analyzing phonological variations frequently found in spoken Korean, we have derived about 700 phonemic contexts that would trigger the multilevel application of the corresponding phonological process, which consists of phonemic and allophonic rules. In generating pronunciation variants, morphological analysis is preceded to handle variations of phonological words. According to the morphological category, a set of tables reflecting phonemic context is looked up to generate pronunciation variants. Our experiments show that the proposed model produces mostly correct pronunciation variants of phonological words. Then we estimated how useful the pronunciation lexicon and training phonetic transcription using this proposed systems.

  • PDF

Development of POS Tagging System Independent to Word Spacing (띄어쓰기 비종속 품사 태깅 시스템 개발)

  • Lee, Kyung-Il;Ahn, Tae-Sung
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.69-72
    • /
    • 2003
  • 본 논문에서는 입력된 한국어 문자열로부터 형태소를 분석하고, 품사를 태깅하는 방법에 있어 개선된 통계적 모델을 제안하고, 이에 기반한 띄어쓰기 비종속 형태소 분석 및 태깅 시스템의 개발과 성능 평가에 대한 결과를 소개하고 있다. 제안된 통계 기반품사 태깅 시스템은 입력된 문자열로부터 음절의 띄어쓰기 확률값을 계산하여 유사어절을 생성하고, 유사어절 단위로 사용자 띄어쓰기와 상관없이 형태소 후보 리스트를 생성하며, 인접한 후보 형태소들의 접속 확률 계산에 있어 어절 간 접속 확률과 어절 내 접속 확률을 모두 사용함으로, 최적의 형태소 리스트를 결정하는 모델을 사용하고 있다. 특히, 형태소들의 접속 확률 계산 시 어절 간 접속 확률과 어절 내 접속 확률의 결합 비율이 음절의 띄어쓰기 확률 값과 사용자의 띄어쓰기 여부에 따라 자동으로 조절되는 특징을 가지고 있으며, 이를 통해 극단적으로 띄어 쓰거나 붙여 쓴 문장에 대해서도 평균 90%수준의 품사 태깅 성능을 달성할 수 있었다.

  • PDF

Automatic Extraction using Morpheme Network for Korean Texts (형태소 네트웍을 이용한 한글 문헌의 자동 키워드 추출)

  • Kim, Chul-Wan;Chang, Jaw-Woo
    • Annual Conference on Human and Language Technology
    • /
    • 1994.11a
    • /
    • pp.363-368
    • /
    • 1994
  • 본 논문은 한글 문헌의 자동 키워드 추출을 위한 새로운 접근 기법을 제시한다. 한글에서 나타나는 형식형태소는 어절내에서 일정한 결합규칙을 가지며 또한 명사구나 동사구에서 보여지는 것처럼 어절간의 연결에도 관계된다. 유한개의 형식형태소를 노드로 하여 구성된 형태소 네트???p은 어휘사전 및 문헌을 통해 링크를 생성하게 되며 형태소분석과정에서 이를 이용하면 명사 추출의 정확성을 높일 수 있고 사전 탐색을 최소화하여 미등록어 추정 및 분석 속도를 향상시킬 수 있다.

  • PDF

KMM: A Detailed Morphological Analysis for Korean (구조화된 상세 정보를 제공하는 한국어 형태소 분석기: KMM)

  • Kim, Soora
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.202-206
    • /
    • 2010
  • 이 논문에서는 한국어 형태소 분석기 KMM(Korean Malaga Morphology)을 소개하고자 한다. KMM의 개발 동기는 이후 자연언어 처리 단계의 기반으로 사용될 수 있을 뿐 아니라 이론 형태론 연구의 도구로도 사용될 수 있도록 상세한 형태 동사 의미 정보를 제공하는 것이었다. 이론적 틀은 좌연접 문법(Left-Associative Grammar)에 기초한 LA-MORPH이며, 좌연접 기반 문법 개발 도구인 MALAGA로 구현되었다. LA-MORPH에 기반한 KMM은 분석 실행중이 아닐 때에는 사전의 규모를 최소한으로 유지하다가 분석에 필요할 때에만 분석용 사전을 자동으로 생성한다. 형태소 분석은 분석용 사전에 근거하여, 매칭과 결합이라는 단순한 알고리즘만을 사용한다. KMM의 분석은 동사 어절의 경우, 시제, 서법, 문형, 대우법, 명사 어절의 경우 격정보, 수사 결합어절의 경우 추출된 수랑 정보 등과 같은 상세한 정보를 제시한다. 세종 말뭉치와 KIBS 말뭉치를 KMM 을 이용해서 분석한 결과 각각의 94.96%와 94.59%의 분석률과 88.4%와 90.7%의 정확도를 보였다.

  • PDF

Syllable-Based Korean Morphological Analyzer (음절에 기반한 한국어 형태소 분석기)

  • Jang, Dong-Su;Seo, Young-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 1993.10a
    • /
    • pp.331-339
    • /
    • 1993
  • 본 논문에서는 한국어의 음절 특성을 이용한 한국어 형태소 분석기를 제시하였다. 이 형태소 분석기는 품사별 음절 정보, 불규칙 음절 정보, 활용어절 음절 정보, 선어말 어미 음절 정보 등을 이용하여 음절 단위로 형태소 분석을 한다. 음절 단위의 형태소 분석 방법은 음소 단위의 방법보다 형태소 분석시에 생성될 수 있는 잘못된 중간 분석 결과를 크게 감소시켜, 사전 탐색 부담을 최소화한다. 시스템의 사전은 품사별 결합 특성과 사전 표제어의 길이별 분포 특성을 이용하여 구성하였으며, 그 규모는 약 16만 어휘이다. 이러한 사전 구성은 효율적인 사전검색을 제공하며, 특히 철자 검색기와 자동 인덱싱 등의 다양한 응용 시스템 요구를 곧바로 수용할 수 있는 유연성과 효율성을 갖고 있다.

  • PDF

A Corpus-based Hybrid Model for Morphological Analysis and Part-of-Speech Tagging (형태소 분석 및 품사 부착을 위한 말뭉치 기반 혼합 모형)

  • Lee, Seung-Wook;Lee, Do-Gil;Rim, Hae-Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.7
    • /
    • pp.11-18
    • /
    • 2008
  • Korean morphological analyzer generally generates multiple candidates, and then selects the most likely one among multiple candidates. As the number of candidates increases, the chance that the correctly analyzed candidate is included in the candidate list also grows. This process, however, increases ambiguity and then deteriorates the performance. In this paper, we propose a new rule-based model that produces one best analysis. The analysis rules are automatically extracted from large amount of Part-of-Speech tagged corpus, and the proposed model does not require any manual construction cost of analysis rules, and has shown high success rate of analysis. Futhermore, the proposed model can reduce the ambiguities and computational complexities in the candidate selection phase because the model produces one analysis when it can successfully analyze the given word. By combining the conventional probability-based model. the model can also improve the performance of analysis when it does not produce a successful analysis.

  • PDF

A Proposal of a Keyword Extraction System for Detecting Social Issues (사회문제 해결형 기술수요 발굴을 위한 키워드 추출 시스템 제안)

  • Jeong, Dami;Kim, Jaeseok;Kim, Gi-Nam;Heo, Jong-Uk;On, Byung-Won;Kang, Mijung
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.1-23
    • /
    • 2013
  • To discover significant social issues such as unemployment, economy crisis, social welfare etc. that are urgent issues to be solved in a modern society, in the existing approach, researchers usually collect opinions from professional experts and scholars through either online or offline surveys. However, such a method does not seem to be effective from time to time. As usual, due to the problem of expense, a large number of survey replies are seldom gathered. In some cases, it is also hard to find out professional persons dealing with specific social issues. Thus, the sample set is often small and may have some bias. Furthermore, regarding a social issue, several experts may make totally different conclusions because each expert has his subjective point of view and different background. In this case, it is considerably hard to figure out what current social issues are and which social issues are really important. To surmount the shortcomings of the current approach, in this paper, we develop a prototype system that semi-automatically detects social issue keywords representing social issues and problems from about 1.3 million news articles issued by about 10 major domestic presses in Korea from June 2009 until July 2012. Our proposed system consists of (1) collecting and extracting texts from the collected news articles, (2) identifying only news articles related to social issues, (3) analyzing the lexical items of Korean sentences, (4) finding a set of topics regarding social keywords over time based on probabilistic topic modeling, (5) matching relevant paragraphs to a given topic, and (6) visualizing social keywords for easy understanding. In particular, we propose a novel matching algorithm relying on generative models. The goal of our proposed matching algorithm is to best match paragraphs to each topic. Technically, using a topic model such as Latent Dirichlet Allocation (LDA), we can obtain a set of topics, each of which has relevant terms and their probability values. In our problem, given a set of text documents (e.g., news articles), LDA shows a set of topic clusters, and then each topic cluster is labeled by human annotators, where each topic label stands for a social keyword. For example, suppose there is a topic (e.g., Topic1 = {(unemployment, 0.4), (layoff, 0.3), (business, 0.3)}) and then a human annotator labels "Unemployment Problem" on Topic1. In this example, it is non-trivial to understand what happened to the unemployment problem in our society. In other words, taking a look at only social keywords, we have no idea of the detailed events occurring in our society. To tackle this matter, we develop the matching algorithm that computes the probability value of a paragraph given a topic, relying on (i) topic terms and (ii) their probability values. For instance, given a set of text documents, we segment each text document to paragraphs. In the meantime, using LDA, we can extract a set of topics from the text documents. Based on our matching process, each paragraph is assigned to a topic, indicating that the paragraph best matches the topic. Finally, each topic has several best matched paragraphs. Furthermore, assuming there are a topic (e.g., Unemployment Problem) and the best matched paragraph (e.g., Up to 300 workers lost their jobs in XXX company at Seoul). In this case, we can grasp the detailed information of the social keyword such as "300 workers", "unemployment", "XXX company", and "Seoul". In addition, our system visualizes social keywords over time. Therefore, through our matching process and keyword visualization, most researchers will be able to detect social issues easily and quickly. Through this prototype system, we have detected various social issues appearing in our society and also showed effectiveness of our proposed methods according to our experimental results. Note that you can also use our proof-of-concept system in http://dslab.snu.ac.kr/demo.html.