• Title/Summary/Keyword: 결합분포확률

Search Result 148, Processing Time 0.025 seconds

Estimated Soft Information based Most Probable Classification Scheme for Sorting Metal Scraps with Laser-induced Breakdown Spectroscopy (레이저유도 플라즈마 분광법을 이용한 폐금속 분류를 위한 추정 연성정보 기반의 최빈 분류 기술)

  • Kim, Eden;Jang, Hyemin;Shin, Sungho;Jeong, Sungho;Hwang, Euiseok
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.84-91
    • /
    • 2018
  • In this study, a novel soft information based most probable classification scheme is proposed for sorting recyclable metal alloys with laser induced breakdown spectroscopy (LIBS). Regression analysis with LIBS captured spectrums for estimating concentrations of common elements can be efficient for classifying unknown arbitrary metal alloys, even when that particular alloy is not included for training. Therefore, partial least square regression (PLSR) is employed in the proposed scheme, where spectrums of the certified reference materials (CRMs) are used for training. With the PLSR model, the concentrations of the test spectrum are estimated independently and are compared to those of CRMs for finding out the most probable class. Then, joint soft information can be obtained by assuming multi-variate normal (MVN) distribution, which enables to account the probability measure or a prior information and improves classification performance. For evaluating the proposed schemes, MVN soft information is evaluated based on PLSR of LIBS captured spectrums of 9 metal CRMs, and tested for classifying unknown metal alloys. Furthermore, the likelihood is evaluated with the radar chart to effectively visualize and search the most probable class among the candidates. By the leave-one-out cross validation tests, the proposed scheme is not only showing improved classification accuracies but also helpful for adaptive post-processing to correct the mis-classifications.

Estimation and Analysis of Wave Spectrum Parameter using HeMOSU-2 Observation Data (HeMOSU-2 관측 자료를 이용한 파랑 스펙트럼 매개변수 추정 및 분석)

  • Lee, Uk-Jae;Ko, Dong-Hui;Kim, Ji-Young;Cho, Hong-Yeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.217-225
    • /
    • 2021
  • In this study, wave spectrum data were calculated using the water surface elevation data observed at 5Hz intervals from the HeMOSU-2 meteorological tower installed on the west coast of Korea, and wave parameters were estimated using wave spectrum data. For all significant wave height ranges, the peak enhancement parameter (γopt) of the JONSWAP spectrum and the scale parameter (α) and shape parameter (β) of the modify BM spectrum were estimated based on the observed spectrum, and the distribution of each parameter was confirmed. As a result of the analysis, the peak enhancement parameter (γopt) of the JONSWAP spectrum was calculated to be 1.27, which is very low compared to the previously proposed 3.3. And in the range of all significant wave heights, the distribution of the peak enhancement parameter (γopt) was shown as a combined distribution of probability mass function (PMF) and probability density function (PDF). In addition, the scale parameter (α) and shape parameter (β) of the modify BM spectrum were estimated to be [0.245, -1.278], which are lower than the existing [0.300, -1.098], and the result of the linear correlation analysis between the two parameters was β = -3.86α.

Image Retrieval Using Spatial Color Correlation and Texture Characteristics Based on Local Fourier Transform (색상의 공간적인 상관관계와 국부적인 푸리에 변환에 기반한 질감 특성을 이용한 영상 검색)

  • Park, Ki-Tae;Moon, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.10-16
    • /
    • 2007
  • In this paper, we propose a technique for retrieving images using spatial color correlation and texture characteristics based on local fourier transform. In order to retrieve images, two new descriptors are proposed. One is a color descriptor which represents spatial color correlation. The other is a descriptor combining the proposed color descriptor with texture descriptor. Since most of existing color descriptors including color correlogram which represent spatial color correlation considered just color distribution between neighborhood pixels, the structural information of neighborhood pixels is not considered. Therefore, a novel color descriptor which simultaneously represents spatial color distribution and structural information is proposed. The proposed color descriptor represents color distribution of Min-Max color pairs calculating color distance between center pixel and neighborhood pixels in a block with 3x3 size. Also, the structural information which indicates directional difference between minimum color and maximum color is simultaneously considered. Then new color descriptor(min-max color correlation descriptor, MMCCD) containing mean and variance values of each directional difference is generated. While the proposed color descriptor includes by far smaller feature vector over color correlogram, the proposed color descriptor improves 2.5 % ${\sim}$ 13.21% precision rate, compared with color correlogram. In addition, we propose a another descriptor which combines the proposed color descriptor and texture characteristics based on local fourier transform. The combined method reduces size of feature vector as well as shows improved results over existing methods.

Comparison of Compton Image Reconstruction Algorithms for Estimation of Internal Radioactivity Distribution in Concrete Waste During Decommissioning of Nuclear Power Plant (원전 해체 시 방사성 콘크리트 폐기물 내부 방사능 분포 예측을 위한 컴프턴 영상 재구성 방법의 비교)

  • Lee, Tae-Woong;Jo, Seong-Min;Yoon, Chang-Yeon;Kim, Nak-Jeom
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2
    • /
    • pp.217-225
    • /
    • 2020
  • Concrete waste accounts for approximately 70~80% of the total waste generated during the decommissioning of nuclear power plants (NPPs). Based upon the concentration of each radionuclide, the concrete waste from the decommissioning can be used in the determination of the clearance threshold used to classify waste as radioactive. To reduce the cost of radioactive concrete waste disposal, it is important to perform decontamination before self-disposal or limited recycling. Therefore, it is necessary to estimate the internal radioactivity distribution of radioactive concrete waste to ensure effective decontamination. In this study, the performance metrics of various Compton reconstruction algorithms were compared in order to identify the best strategy to estimate the internal radioactivity distribution in concrete waste during the decommissioning of NPPs. Four reconstruction algorithms, namely, simple back-projection, filtered back-projection, maximum likelihood expectation maximization (MLEM), and energy-deconvolution MLEM (E-MLEM) were used as Compton reconstruction algorithms. Subsequently, the results obtained by using these various reconstruction algorithms were compared with one another and evaluated, using quantitative evaluation methods. The MLEM and E-MLEM reconstruction algorithms exhibited the best performance in maintaining a high image resolution and signal-to-noise ratio (SNR), respectively. The results of this study demonstrate the feasibility of using Compton images in the estimation of the internal radioactive distribution of concrete during the decommissioning of NPPs.

Time Dependent Evaluation of Corrosion Free Life of Concrete Tunnel Structures Based on the Reliability Theory (해저 콘크리트 구조물의 신뢰성 이론에 의한 시간 의존적 내구수명 평가)

  • Pack, Seung Woo;Jung, Min Sun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.142-154
    • /
    • 2011
  • This study predicted the probability of corrosion initiation of reinforced concrete tunnel boxes structures using the Monte Carlo Simulation. For the inner wall and outer wall in the tunnel boxes, exposed to airborne chloride ion and seawater directly respectively, statistical values of parameters like diffusion coefficient D, surface chloride content $C_s$, cover depth c, and the chloride threshold level $C_{lim}$ were examined from experiment or literature review. Their average values accounted for $3.77{\times}10^{-12}m^2/s$, 3.0% by weight of cement, 94.7mm and 45.5mm for outer wall and inner wall, respectively, and 0.69% by weight of cement for D, $C_s$, c, and $C_{lim}$, respectively. With these parametric values, the distribution of chloride contents at rebar with time and the probability of corrosion initiation of the tunnel boxes, inner wall and outer wall, was examined by considering time dependency of chloride transport. From the examination, the histogram of chloride contents at rebar is closer to a gamma distribution, and the mean value increases with time, while the coefficient of variance decreases with time. It was found that the probability of corrosion initiation and the time to corrosion were dependent on the time dependency of chloride transport. Time independent model predicted time to corrosion initiation of inner wall and outer wall as 8 and 12 years, respectively, while 178 and 283 years of time to corrosion was calculated by time dependent model for inner wall and outer wall, respectively. For time independent model, the probability of corrosion at 100 years of exposure for inner wall and outer wall was ranged 59.5 and 95.5%, respectively, while time dependent model indicated 2.9 and 0.2% of the probability corrosion, respectively. Finally, impact of $C_{lim}$, including values specified in current codes, on the probability of corrosion initiation and corrosion free life is discussed.

Frequency analysis for annual maximum of daily snow accumulations using conditional joint probability distribution (적설 자료의 빈도해석을 위한 확률밀도함수 개선 연구)

  • Park, Heeseong;Chung, Gunhui
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.9
    • /
    • pp.627-635
    • /
    • 2019
  • In Korea, snow damage has been happened in the region with no snowfalls in history. Also, casual damage was caused by heavy snow. Therefore, policy about the Natural Disaster Reduction Comprehensive Plan has been changed to include the mitigation measures of snow damage. However, since heavy snow damage was not frequent, studies on snowfall have not been conducted in different points. The characteristics of snow data commonly are not same to the rainfall data. For example, some parts of the southern coastal areas are snowless during the year, so there is often no values or zero values among the annual maximum daily snow accumulation. The characteristics of this type of data is similar to the censored data. Indeed, Busan observation sites have more than 36% of no data or zero data. Despite of the different characteristics, the frequency analysis for snow data has been implemented according to the procedures for rainfall data. The frequency analysis could be implemented in both way to include the zero data or exclude the zero data. The fitness of both results would not be high enough to represent the real data shape. Therefore, in this study, a methodology for selecting a probability density function was suggested considering the characteristics of snow data in Korea. A method to select probability density function using conditional joint probability distribution was proposed. As a result, fitness from the proposed method was higher than the conventional methods. This shows that the conventional methods (includes 0 or excludes 0) overestimated snow depth. The results of this study can affect the design standards of buildings and also contribute to the establishment of measures to reduce snow damage.

Bayesian Cognizance of RFID Tags (Bayes 풍의 RFID Tag 인식)

  • Park, Jin-Kyung;Ha, Jun;Choi, Cheon-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.5
    • /
    • pp.70-77
    • /
    • 2009
  • In an RFID network consisting of a single reader and many tags, a framed and slotted ALOHA, which provides a number of slots for the tags to respond, was introduced for arbitrating a collision among tags' responses. In a framed and slotted ALOHA, the number of slots in each frame should be optimized to attain the maximal efficiency in tag cognizance. While such an optimization necessitates the knowledge about the number of tags, the reader hardly knows it. In this paper, we propose a tag cognizance scheme based on framed and slotted ALOHA, which is characterized by directly taking a Bayes action on the number of slots without estimating the number of tags separately. Specifically, a Bayes action is yielded by solving a decision problem which incorporates the prior distribution the number of tags, the observation on the number of slots in which no tag responds and the loss function reflecting the cognizance rate. Also, a Bayes action in each frame is supported by an evolution of prior distribution for the number of tags. From the simulation results, we observe that the pair of evolving prior distribution and Bayes action forms a robust scheme which attains a certain level of cognizance rate in spite of a high discrepancy between the Due and initially believed numbers of tags. Also, the proposed scheme is confirmed to be able to achieve higher cognizance completion probability than a scheme using classical estimate of the number of tags separately.

Use of Space-time Autocorrelation Information in Time-series Temperature Mapping (시계열 기온 분포도 작성을 위한 시공간 자기상관성 정보의 결합)

  • Park, No-Wook;Jang, Dong-Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.17 no.4
    • /
    • pp.432-442
    • /
    • 2011
  • Climatic variables such as temperature and precipitation tend to vary both in space and in time simultaneously. Thus, it is necessary to include space-time autocorrelation into conventional spatial interpolation methods for reliable time-series mapping. This paper introduces and applies space-time variogram modeling and space-time kriging to generate time-series temperature maps using hourly Automatic Weather System(AWS) temperature observation data for a one-month period. First, temperature observation data are decomposed into deterministic trend and stochastic residual components. For trend component modeling, elevation data which have reasonable correlation with temperature are used as secondary information to generate trend component with topographic effects. Then, space-time variograms of residual components are estimated and modelled by using a product-sum space-time variogram model to account for not only autocorrelation both in space and in time, but also their interactions. From a case study, space-time kriging outperforms both conventional space only ordinary kriging and regression-kriging, which indicates the importance of using space-time autocorrelation information as well as elevation data. It is expected that space-time kriging would be a useful tool when a space-poor but time-rich dataset is analyzed.

  • PDF

A Performance Analysis of an Adaptive Sector Cell System using the Measured Urban Wireless Channel Data (도심 무선채널의 실측데이터를 이용한 적응 섹터 셀 시스템의 성능분석)

  • Ko, Hak-Lim;Park, Byeong-Hoon;Lee, Jong-Heon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.1
    • /
    • pp.24-30
    • /
    • 2008
  • In this paper we analyze the performance of an adaptive sector cell system, which is adopted to maintain the traffic balance between sectors and to utilize the cell resources effectively, using the data collected from real channel environments. In the data measurements, we transmitted the QPSK modulated signal with carrier frequency of 1.95GHz and received the signals using the 8x4 array antenna equipped on the top of buildings in the urban area. We analyzed the angular distribution and the delay spread of a user signal and analyzed angular distribution of mobile users in a cell using the collected data. Also, we propose the vector channel modeling using the estimated pdf(probability distribution function) of the analyzing results. Through the proposed channel modeling the improvement of the call blocking rate was analyzed when using the adaptive sector cell system, and computer simulations show that the call blocking rate of the adaptive sector cell system was much lower than that of the fixed sector cell system. Additionally, it shows that the call blocking rate increases severely in the fixed sector cell system while the difference of the call blocking rate was smaller in the adaptive sector cell system, as the user density of the spatial distribution increases.

  • PDF

Resistivity Image Reconstruction Using Interacting Dual-Mode Regularization (상호작용 이중-모드 조정방법을 이용한 저항률 영상 복원)

  • Kang, Suk-In;Kim, Kyung-Youn
    • Journal of IKEEE
    • /
    • v.20 no.2
    • /
    • pp.152-162
    • /
    • 2016
  • Electrical resistivity tomography (ERT) is a technique to reconstruct the internal resistivity distribution using the measured voltages on the surface electrodes. ERT inverse problem suffers from ill-posedness nature, so regularization methods are used to mitigate ill-posedness. The reconstruction performance varies depending on the type of regularization method. In this paper, an interacting dual-mode regularization method is proposed with two different regularization methods, L1-norm regularization and total variation (TV) regularization, to achieve robust reconstruction performance. The interacting dual-mode regularization method selects the suitable regularization method and combines the regularization methods based on computed mode probabilities depending on the actual conditions. The proposed method is tested with numerical simulations and the results demonstrate an improved reconstruction performance.