Proceedings of the Korean Information Science Society Conference
/
2002.04b
/
pp.481-483
/
2002
본 논문에서는 데이터 결합 영역에서 문서값을 정규화 하는 기법과 결합함수에 따라 용어가중치 결합이 검색성능에 어떤 영향을 미치는가를 분석하였으며, 특히 용어가중치 결합이 실질적으로 효율적인가를 성능 향상률 측면과 검색시스템의 효율성 측면에서 검증하고, 성능이 향상된 용어가중치 결합의 특징을 분석하였다. 실헙결과 대부분의 장어가중치 결합은 문서값 정규화 기법과 실험집단에 관계없이 높은 성능 향상률을 보이지 않았다. 특히 단일가중치고 높은 검색성능을 보였던 상위 가중치 알고리즘들은 다른 가중치 알고리즘과 결합할 경우 두드러진 성능 향상률을 보이지 않았다. 검색시스템의 효율성 측면에서 용어가중치 결합을 평가한 결과 문헌 내 단어빈도를 최대단어 빈도로 정규화한 가중치 알고리즘이 코사인 정규화 기법을 적용한 가중치 알고리즘들과 결합될 때 5개 실험집안에서 최적 단일가중치 보다 2% 이상 높은 성능을 보였다. 이는 서로 다른 특성을 지니는 용어가중치 알고리즘들이 장단점을 보완하여 검색성능을 향상시킨 수 있다는 것을 의미한다. 그러나 용어가중치 결합의 효율성은 컬렉션과 가중치 알고리즘의 특성에 의존적이었으며, 비록 각 용어가중치 결합의 성능이 높게 나타날지라도 최적의 성능을 보인 달일가중치와 비교하면 그 성능 차이가 미미하거나 낮아서 대부분의 용어가중치 결합이 실질적으로 효과적이지 못하였다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.210-212
/
2021
In modern society, various digital equipment are being distributed due to the influence of the 4th industrial revolution, and they are used in a wide range of fields such as automated processes, intelligent CCTV, medical industry, robots, and drones. Accordingly, the importance of the preprocessing process in a system operating based on an image is increasing, and an algorithm for effectively reconstructing an image is drawing attention. In this paper, we propose a filter algorithm based on a combined weight value to reconstruct an image in a complex noise environment. The proposed algorithm calculates the weight according to the spatial distance and the weight according to the difference between the pixel values for the input image and the pixel values inside the filtering mask, respectively. The final output was filtered by applying the join weights calculated based on the two weights to the mask. In order to verify the performance of the proposed algorithm, we simulated it by comparing it with the existing filter algorithm.
If the forecasts from different, sources are combined in some way, the resulting forecasts may be more accurate than any of the individual components. In this paper, the established procedures of combining forecasts are reviewed and the alternative procedures are suggested. By the results of empirical analysis from survey data, the method of combining forecasts using the restricted regression weights, the restricted robust regression weights, and mixed regression weights are robust. We can not find the most efficient combined forecasts in any case if we select the corresponding decision by preliminary analysis for the statistical properties of individual dorecasts, our results of combined forecast can became useful.
O, Se-Ung;Seo, Gi-Yeol;Park, Jong-Min;Seo, Sang-Hyeon;Park, Gye-Gak
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.04a
/
pp.265-268
/
2007
다기준 의사결정 문제에서 요인간의 가중치 계산과 계산된 요인의 평가값 종합화는 매우 중요하다. 본 연구는 다기준 의사결정 문제에 있어서 의사결정자의 의사전략 결합기법을 도출하고 다기준의사결정 문제로 적용하였다. 복잡한 환경에서 의사결정을 할 때 발생되는 모호함을 해결하기 위해 주관적 의견을 결합한 퍼지지합 이론을, 다기준 문제의 요인을 퍼지값으로 계층화하기 위해 계층분석법을 적용하였다. 또한, 의사결정자의 의사전략을 결합하기 위해 순위 가중치평균법을 이용하였다. 순위가 있는 가중치 평균방법은 퍼지집합의 orness 특성을 이용하여 의사결정자의 주관적 의지를 반영할 수 있는 기법으로, 순위가중치평균(OWA) 연산자에 따른 낙관적 혹은 비관적인 정도에 따라 주관적인 의도를 반영할 수 있는 방법이다. 다기준의사결정 문제의 적용사례로서 해상교통안전을 위한 대기정박지의 위치분석 문제를 본 연구에서 제시한 방법에 따라 적용하였다.
In this paper, we propose a novel face recognition(FR) method that takes advantage of combining weighted deep local features extracted from multiple Deep Convolutional Neural Networks(DCNNs) learned with a set of facial local regions. In the proposed method, the so-called weighed deep local features are generated from multiple DCNNs each trained with a particular face local region and the corresponding weight represents the importance of local region in terms of improving FR performance. Our weighted deep local features are applied to Joint Bayesian metric learning in conjunction with Nearest Neighbor(NN) Classifier for the purpose of FR. Systematic and comparative experiments show that our proposed method is robust to variations in pose, illumination, and expression. Also, experimental results demonstrate that our method is feasible for improving face recognition performance.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.5
/
pp.645-651
/
2021
With the advent of the Fourth Industrial Revolution, modern society uses a diverse pool of devices. In this context, there is increasing interest in removing various kinds of noise arising in data transmission. However, it is difficult to restore image that damaged by mixed noise, and a digital filter that effectively restores an image according to the characteristics of the noise is required. In this paper, we propose a digital switching filter algorithm to remove mixed noise generated during digital image transmission. The proposed algorithm switches the filtering process through noise judgment and reconstructs the image using fuzzy weights and combined weights based on the pixel values inside the mask. To evaluate the proposed algorithm, we compared it with existing filter algorithms through simulation. Filtering results were expanded and compared for visual evaluation, and PSNR comparison was used for quantitative evaluation.
Proceedings of the Korean Society for Information Management Conference
/
2001.08a
/
pp.137-142
/
2001
본 논문에서는 벡터모델과 신경망 모델을 이용하여 데이터 퓨전의 관점에서 다중증거로서 가중치, 문헌분리가, 엔트로피, 공기유사도를 적절히 결합하여 질의를 확장하는 방법을 제안한다. 실험결과 코사인 정규화 가중치 알고리즘, 문서길이 정규화 가중치 알고리즘과 결합하여 질의를 확장하는 것이 정규화시키지 않고 단순히 문헌빈도와 역문헌빈도의 조합을 이용한 가중치 알고리즘과 결합했을 때 보다 평균 정확률 향상이 더 높게 나타났다. 또한 다양한 공기기반 유사도를 이용하여 질의확장을 한 결과 벡터모델과 신경망 모델에서 코사인 공기유사도에 기반하여 질의확장한 경우가 다른 공기유사도에 비해 더 좋은 성능을 보였다.
Proceedings of the Korean Society for Information Management Conference
/
1995.08a
/
pp.33-36
/
1995
질의 또는 문서에 대한 상이한 표현 방법 또는 상이한 검색 기법은 서로 다른 집합의 문서들을 검색함이 알려져 왔다. 최근 이러한 특성을 이용하여 다양한 표현 방법 또는 검색 기법을 결합함으로써 보다 높은 검색 효과를 얻을 수 있음이 입증되었다. 본 논문에서는 질의와 문서에 대한 하나의 표현과 하나의 검색 기법하에서 서로 다른 특성을 갖는 가중치 기법을 결합함으로써 보다 높은 검색 효과를 얻을 수 있음을 기술한다. 문서의 형태를 분류하고 가중치기법의 특성을 기술한 후, 이를 기반으로 하여 서로 다른 특성을 갖는 가중치 기법은 서로 다른 형태의 문서를 검색함을 설명한다. 또한 실험을 통하여 서로 다른 특성을 갖는 가중치 기법을 결합함으로써 보다 높은 검색 효과를 얻을 수 있음을 입증한다.
소프트웨어 품질 측정은 소프트웨어 공학의 필수적인 요소이다. 소프트웨어 품질 척도 중 하나인 결합도는 모듈간의 얼마나 강하게 연결되어있는지를 나타낸다. 결합도는 소프트웨어의 결함-경향성, 모듈화, 재사용성, 변경-경향성 등 다양한 목적으로 사용된다. 기존의 결합도 척도들은 메소드호출 횟수에 의해서 결정되는데, 이는 메소드의 가중치를 고려하지 않기 때문에 결합도를 정확히 측정 하지 못한다. 본 논문은 페이지랭크 알고리즘을 이용하여 메소드의 가중치를 측정하고, 이를 이용한 결합도 척도 개선 방법에 대해 제안한다. 본 논문의 유효성을 검증하기 위하여, 4 개의 오픈 소스 프로젝트를 대상으로 기존의 방법과 개선된 방법으로 결합도 척도 3 개를 측정하였다. 개선된 결합도 3 개는 유지보수의 척도로 사용되는 변경-경향성(Change-Proneness)과의 상관계수가 기존의 결합도 척도에 비하여 눈의 띄게 향상되었다. 따라서 개선된 결합도 척도는 소프트웨어 품질을 더 정확하게 측정할 수 있다.
Recent researches have been focusing on jointly using lip motions and speech for reliable speech recognitions in noisy environments. To this end, this paper proposes the method of combining the visual speech recognizer and the conventional speech recognizer with each output properly weighted. In particular, we propose the method of autonomously determining the weights, depending on the amounts of noise in the speech. The correlations between adjacent speech samples and the residual errors of the LPC analysis are used for this determination. Simulation results show that the speech recognizer combined in this way provides the recognition performance of 83 % even in severely noisy environments.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.