• Title/Summary/Keyword: 결함 관리 기법

Search Result 2,856, Processing Time 0.031 seconds

The Characteristics of Submarine Groundwater Discharge in the Coastal Area of Nakdong River Basin (낙동강 유역의 연안 해저지하수 유출특성에 관한 연구)

  • Kim, Daesun;Jung, Hahn Chul
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1589-1597
    • /
    • 2021
  • Submarine groundwater discharge (SGD) in coastal areas is gaining importance as a major transport route that bring nutrients and trace metals into the ocean. This paper describes the analysis of the seasonal changes and spatiotemporal characteristicsthrough the modeling monthly SGD for 35 years from 1986 to 2020 for the Nakdong river basin. In this study, we extracted 210 watersheds and SGD estimation points using the SRTM (Shuttle Radar Topography Mission) DEM (Digital Elevation Model). The average annual SGD of the Nakdong River basin was estimated to be 466.7 m2/yr from the FLDAS (Famine Early Warning Systems Network Land Data Assimilation System) recharge data of 10 km which is the highest resolution global model applicable to Korea. There was no significant time-series variation of SGD in the Nakdong river basin, but the concentrated period of SGD was expanded from summer to autumn. In addition, it was confirmed that there is a large amount of SGD regardless of the season in coastal area nearby large rivers, and the trend has slightly increased since the 1980s. The characteristics are considered to be related to the change in the major precipitation period in the study area, and spatially it is due to the high baseflow-groundwater in the vicinity of large rivers. This study is a precedentstudy that presents a modeling technique to explore the characteristics of SGD in Korea, and is expected to be useful as foundational information for coastal management and evaluating the impact of SGD to the ocean.

A Study on Pre-evaluation of Tree Species Classification Possibility of CAS500-4 Using RapidEye Satellite Imageries (농림위성 활용 수종분류 가능성 평가를 위한 래피드아이 영상 기반 시험 분석)

  • Kwon, Soo-Kyung;Kim, Kyoung-Min;Lim, Joongbin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.291-304
    • /
    • 2021
  • Updating a forest type map is essential for sustainable forest resource management and monitoring to cope with climate change and various environmental problems. According to the necessity of efficient and wide-area forestry remote sensing, CAS500-4 (Compact Advanced Satellite 500-4; The agriculture and forestry satellite) project has been confirmed and scheduled for launch in 2023. Before launching and utilizing CAS500-4, this study aimed to pre-evaluation the possibility of satellite-based tree species classification using RapidEye, which has similar specifications to the CAS500-4. In this study, the study area was the Chuncheon forest management complex, Gangwon-do. The spectral information was extracted from the growing season image. And the GLCM texture information was derived from the growing and non-growing seasons NIR bands. Both information were used to classification with random forest machine learning method. In this study, tree species were classified into nine classes to the coniferous tree (Korean red pine, Korean pine, Japanese larch), broad-leaved trees (Mongolian oak, Oriental cork oak, East Asian white birch, Korean Castanea, and other broad-leaved trees), and mixed forest. Finally, the classification accuracy was calculated by comparing the forest type map and classification results. As a result, the accuracy was 39.41% when only spectral information was used and 69.29% when both spectral information and texture information was used. For future study, the applicability of the CAS500-4 will be improved by substituting additional variables that more effectively reflect vegetation's ecological characteristics.

Topic Based Hierarchical Network Analysis for Entrepreneur Using Text Mining (텍스트 마이닝을 이용한 주제기반의 기업인 네트워크 계층 분석)

  • Lee, Donghun;Kim, Yonghwa;Kim, Kwanho
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.3
    • /
    • pp.33-49
    • /
    • 2018
  • The importance of convergence activities among business is increasing due to the necessity of designing and developing new products to satisfy various customers' needs. In particular, decision makers such as CEOs are required to participate in networks between entrepreneurs for being connected with valuable convergence partners. Moreover, it is important for entrepreneurs not only to make a large number of network connections, but also to understand the networking relationship with entrepreneurs with similar topic information. However, there is a difficult limit in collecting the topic information that can show the lack of current status of business and the technology and characteristics of entrepreneur in industry sector. In this paper, we solve these problems through the topic extraction method and analyze the business network in three aspects. Specifically, there are C, S, T-Layer models, and each model analyzes amount of entrepreneurs relationship, network centrality, and topic similarity. As a result of experiments using real data, entrepreneur need to activate network by connecting high centrality entrepreneur when the corporate relationship is low. In addition, we confirmed through experiments that there is a need to activate the topic-based network when topic similarity is low between entrepreneurs.

Factors Affecting Consumers' Experience of Using Smart Healthcare Focusing on Health Literacy and Personal Characteristics (건강정보이해능력과 개인의 특성이 스마트 헬스케어 이용 경험에 미치는 요인 분석)

  • Kim, Ga Eun;Park, Hyun Jun
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.4
    • /
    • pp.41-53
    • /
    • 2019
  • As the paradigm of healthcare shifts from the center of treatment to the center of prevention, products and services related to disease prevention are emerging at domestic and abroad. The government considers the smart healthcare industry as a solution to healthcare problems such as an increase in the number of chronic illnesses and an increase in the burden of medical expenses. The purpose of this study is to explore the factors affecting the use of smart healthcare products and services focusing on Health Literacy and health related personal characteristics and to provide policy implications. The subjects of the questionnaire are 1,027 adults over 20 in the nation, and conducted an online survey. In addition, the factors were analyzed by decision tree method. As a result, most of the respondents(76.9%) did not have experience using Smart Healthcare products and services. However, in the Health Literacy question, there was a difference in use experience depending on the degree of difficulty in using the mass media information. Other factors were the degree of intention to use new technology, the understanding of counseling about family members and friends, and health checkups. In order to enable self-healthcare through smart healthcare products and services, the ability of consumers to explore and utilize health information from the mass media should be improved. In addition, government and enterprise efforts are needed to achieve this.

Development of Low-Power IoT Sensor and Cloud-Based Data Fusion Displacement Estimation Method for Ambient Bridge Monitoring (상시 교량 모니터링을 위한 저전력 IoT 센서 및 클라우드 기반 데이터 융합 변위 측정 기법 개발)

  • Park, Jun-Young;Shin, Jun-Sik;Won, Jong-Bin;Park, Jong-Woong;Park, Min-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.301-308
    • /
    • 2021
  • It is important to develop a digital SOC (Social Overhead Capital) maintenance system for preemptive maintenance in response to the rapid aging of social infrastructures. Abnormal signals induced from structures can be detected quickly and optimal decisions can be made promptly using IoT sensors deployed on the structures. In this study, a digital SOC monitoring system incorporating a multimetric IoT sensor was developed for long-term monitoring, for use in cloud-computing server for automated and powerful data analysis, and for establishing databases to perform : (1) multimetric sensing, (2) long-term operation, and (3) LTE-based direct communication. The developed sensor had three axes of acceleration, and five axes of strain sensing channels for multimetric sensing, and had an event-driven power management system that activated the sensors only when vibration exceeded a predetermined limit, or the timer was triggered. The power management system could reduce power consumption, and an additional solar panel charging could enable long-term operation. Data from the sensors were transmitted to the server in real-time via low-power LTE-CAT M1 communication, which does not require an additional gateway device. Furthermore, the cloud server was developed to receive multi-variable data from the sensor, and perform a displacement fusion algorithm to obtain reference-free structural displacement for ambient structural assessment. The proposed digital SOC system was experimentally validated on a steel railroad and concrete girder bridge.

A Study on the Improvement of the Disaster Prevention and Control System for Underpasses by Analytic Hierarchy Process (계층분석법을 통한 지하차도 재해 예방 및 제어 시스템 개선 연구)

  • Kim, Phil Do;Kim, Kyoung Soo;Moon, Yoo Mi
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.734-746
    • /
    • 2020
  • Purpose: Increase in the size and number of underpasses rises occurrence of disasters such as fire and flooding inundation in underpasses. In the occurrence of disasters, the underpasses are more vulnerable to expose of crucial disasters than the general roads due to they are built underground. Therefore, The purpose of this paper is to derive system improvement items to prevent and control disasters in underpasses. Method: A hierarchical model of disaster impact factors and alternatives was developed based on prior researches and expert advices on disaster analyses and impact factors in the underpasses. The developed model was employed for surveys of pairwise comparison, and rankings of improvement were determined by applying the AHP method. Result: With a consistency of the surveys, results of relative weights of evaluation criteria(traffic accidents, fire, flooding inundation) and alternatives(law, system/planning, maintenance/human factor/environment) shows that improvement of laws and system related to the fire disaster is a top priority to prevent and control disaster of the underpasses. Conclusion: From experts' point of view, strengthening laws and systems related to disater prevention facilities such as water spray facilities, external(ground) exit in relation to fire in underpasses showed that it is an alternative to prevent disasters and minimize damage to underpasses.

Transaction Pattern Discrimination of Malicious Supply Chain using Tariff-Structured Big Data (관세 정형 빅데이터를 활용한 우범공급망 거래패턴 선별)

  • Kim, Seongchan;Song, Sa-Kwang;Cho, Minhee;Shin, Su-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.2
    • /
    • pp.121-129
    • /
    • 2021
  • In this study, we try to minimize the tariff risk by constructing a hazardous cargo screening model by applying Association Rule Mining, one of the data mining techniques. For this, the risk level between supply chains is calculated using the Apriori Algorithm, which is an association analysis algorithm, using the big data of the import declaration form of the Korea Customs Service(KCS). We perform data preprocessing and association rule mining to generate a model to be used in screening the supply chain. In the preprocessing process, we extract the attributes required for rule generation from the import declaration data after the error removing process. Then, we generate the rules by using the extracted attributes as inputs to the Apriori algorithm. The generated association rule model is loaded in the KCS screening system. When the import declaration which should be checked is received, the screening system refers to the model and returns the confidence value based on the supply chain information on the import declaration data. The result will be used to determine whether to check the import case. The 5-fold cross-validation of 16.6% precision and 33.8% recall showed that import declaration data for 2 years and 6 months were divided into learning data and test data. This is a result that is about 3.4 times higher in precision and 1.5 times higher in recall than frequency-based methods. This confirms that the proposed method is an effective way to reduce tariff risks.

Topic Modeling-Based Domestic and Foreign Public Data Research Trends Comparative Analysis (토픽 모델링 기반의 국내외 공공데이터 연구 동향 비교 분석)

  • Park, Dae-Yeong;Kim, Deok-Hyeon;Kim, Keun-Wook
    • Journal of Digital Convergence
    • /
    • v.19 no.2
    • /
    • pp.1-12
    • /
    • 2021
  • With the recent 4th Industrial Revolution, the growth and value of big data are continuously increasing, and the government is also actively making efforts to open and utilize public data. However, the situation still does not reach the level of demand for public data use by citizens, At this point, it is necessary to identify research trends in the public data field and seek directions for development. In this study, in order to understand the research trends related to public data, the analysis was performed using topic modeling, which is mainly used in text mining techniques. To this end, we collected papers containing keywords of 'Public data' among domestic and foreign research papers (1,437 domestically, 9,607 overseas) and performed topic modeling based on the LDA algorithm, and compared domestic and foreign public data research trends. After analysis, policy implications were presented. Looking at the time series by topic, research in the fields of 'personal information protection', 'public data management', and 'urban environment' has increased in Korea. Overseas, it was confirmed that research in the fields of 'urban policy', 'cell biology', 'deep learning', and 'cloud·security' is active.

A Study on Development of Portable Concrete Crack Measurement Device Using Image Processing Technique and Laser Sensors (이미지 처리기법 및 레이저 센서를 이용한 휴대용 콘크리트 균열 측정 장치 개발에 관한 연구)

  • Seo, Seunghwan;Ohn, Syng-Yup;Kim, Dong-Hyun;Kwak, Kiseok;Chung, Moonkyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.41-50
    • /
    • 2020
  • Since cracks in concrete structures expedite corrosion of reinforced concrete over a long period of time, regular on-site inspections are essential to ensure structural usability and prevent degradation. Most of the safety inspections of facilities rely on visual inspection with naked eye, so cost and time consuming are severe, and the reliability of results differs depending on the inspector. In this study, a portable measuring device that can be used for safety diagnosis and maintenance was developed as a device that measures the width and length of concrete cracks through image analysis of cracks photographed with a camera. This device captures the cracks found within a close distance (3 m), and accurately calculates the unit pixel size by laser distance measurement, and automatically calculates the crack length and width with the image processing algorithm developed in this study. In measurement results using the crack image applied to the experiment, the measurement of the length of a 0.3 mm crack within a distance of 3 m was possible with a range of about 10% error. The crack width showed a tendency to be overestimated by detecting surrounding pixels due to vibration and blurring effect during the binarization process, but it could be effectively corrected by applying the crack width reduction function.

The Effects of Restaurant Video Taping and Job Communication Drawing Board Production Activities on Cooking Job Skills of High School Students with Intellectual Disabilities (식당 비디오 테이핑 및 직무 의사소통 그림판 제작활동이 지적장애 고등학생의 조리직무기술에 미치는 효과)

  • Kim, Young-Jun;Kim, Wha-Soo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.19-29
    • /
    • 2022
  • This study was conducted with the aim of verifying the effects of restaurant video taping and job communication drawing board production activities on cooking job skills of high school students with intellectual disabilities. The study participants consisted of three students with intellectual disabilities enrolled in the high school course of a special school, and the experimental environment consisted of a kitchen in the restaurant and a classroom in the special school. For the research design, the technique of multiple probe design across subjects according to a single subject research was used. The intervention program consisting of independent variables was applied as a linkage procedure in which study participants videotaped the kitchen's environmental facilities, tools, materials, and staff perform cooking job skills and then taped data from the classroom scene on a job communication drawing board. Cooking job skills consisting of dependent variables are defined as the performance of research participants cooking gimbap directly in the kitchen of the restaurant. As a result of the study, it was found that participants effectively acquired, maintained, and generalized cooking job skills through intervention programs.