• Title/Summary/Keyword: 결함 관리 기법

Search Result 2,856, Processing Time 0.028 seconds

Examination for Efficiency of Groundwater Artificial Recharge in Alluvial Aquifer Near Nakdong River of Changweon Area, Korea (창원지역 낙동강 하천수와 주변 충적층을 이용한 지하수 인공함양의 효율성 평가)

  • Moon, Sang-Ho;Ha, Kyoochul;Kim, Yongcheol;Koh, Dong-Chan;Yoon, Heesung
    • Economic and Environmental Geology
    • /
    • v.47 no.6
    • /
    • pp.611-623
    • /
    • 2014
  • The alluvial aquifer, widely developed near the four major rivers such as Nakdong River, can be used effectively for groundwater artificial recharge and is expected to be the future water resources in Korea. This study is aimed at examining the impact of repeatedly injected river water into the riverside alluvial aquifer on injection rate or efficiency in its system at Changweon area. For this, injection tests were performed two times, first on June 19 and second on September 25 through October 9, 2013, and the mixing ratios of river water to groundwater were used as the tool to compare the efficiency of injection. The mixing ratios were evaluated by using electrical conductivities of injected river water (average $EC=303{\mu}S/cm$) and groundwater ($EC{\fallingdotseq}6,000{\mu}S/cm$) measured at 20 m depth of four observation wells installed 10 m apart from each injection well. The result shows the remarkable differences on two respects. First, in some observation well, detection time for incipient injection effect during $2^{nd}$ injection test was shown to be much slower than that of $1^{st}$ injection test. Second, the hourly increasing rate of mixing ratios in $2^{nd}$ test was revealed to be reduced much more than that of $1^{st}$ test. This means that the efficiency of injection was badly deteriorated by only 1,210 minute injection work. Therefore, injection water needs to be adequately treated beforehand and repeated pumping work and/or resting phase is needed afterwards. To a certain extent, the improvement of water quality in saline aquifer was verified in this system by injection tests.

Derivation of Green Infrastructure Planning Factors for Reducing Particulate Matter - Using Text Mining - (미세먼지 저감을 위한 그린인프라 계획요소 도출 - 텍스트 마이닝을 활용하여 -)

  • Seok, Youngsun;Song, Kihwan;Han, Hyojoo;Lee, Junga
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.5
    • /
    • pp.79-96
    • /
    • 2021
  • Green infrastructure planning represents landscape planning measures to reduce particulate matter. This study aimed to derive factors that may be used in planning green infrastructure for particulate matter reduction using text mining techniques. A range of analyses were carried out by focusing on keywords such as 'particulate matter reduction plan' and 'green infrastructure planning elements'. The analyses included Term Frequency-Inverse Document Frequency (TF-IDF) analysis, centrality analysis, related word analysis, and topic modeling analysis. These analyses were carried out via text mining by collecting information on previous related research, policy reports, and laws. Initially, TF-IDF analysis results were used to classify major keywords relating to particulate matter and green infrastructure into three groups: (1) environmental issues (e.g., particulate matter, environment, carbon, and atmosphere), target spaces (e.g., urban, park, and local green space), and application methods (e.g., analysis, planning, evaluation, development, ecological aspect, policy management, technology, and resilience). Second, the centrality analysis results were found to be similar to those of TF-IDF; it was confirmed that the central connectors to the major keywords were 'Green New Deal' and 'Vacant land'. The results from the analysis of related words verified that planning green infrastructure for particulate matter reduction required planning forests and ventilation corridors. Additionally, moisture must be considered for microclimate control. It was also confirmed that utilizing vacant space, establishing mixed forests, introducing particulate matter reduction technology, and understanding the system may be important for the effective planning of green infrastructure. Topic analysis was used to classify the planning elements of green infrastructure based on ecological, technological, and social functions. The planning elements of ecological function were classified into morphological (e.g., urban forest, green space, wall greening) and functional aspects (e.g., climate control, carbon storage and absorption, provision of habitats, and biodiversity for wildlife). The planning elements of technical function were classified into various themes, including the disaster prevention functions of green infrastructure, buffer effects, stormwater management, water purification, and energy reduction. The planning elements of the social function were classified into themes such as community function, improving the health of users, and scenery improvement. These results suggest that green infrastructure planning for particulate matter reduction requires approaches related to key concepts, such as resilience and sustainability. In particular, there is a need to apply green infrastructure planning elements in order to reduce exposure to particulate matter.

Review of Policy Direction and Coupled Model Development between Groundwater Recharge Quantity and Climate Change (기후변화 연동 지하수 함양량 산정 모델 개발 및 정책방향 고찰)

  • Lee, Moung-Jin;Lee, Joung-Ho;Jeon, Seong-Woo;Houng, Hyun-Jung
    • Journal of Environmental Policy
    • /
    • v.9 no.2
    • /
    • pp.157-184
    • /
    • 2010
  • Global climate change is destroying the water circulation balance by changing rates of precipitation, recharge and discharge, and evapotranspiration. The Intergovernmental Panel on Climate Change (IPCC 2007) makes "changes in rainfall pattern due to climate system changes and consequent shortage of available water resource" a high priority as the weakest part among the effects of human environment caused by future climate changes. Groundwater, which occupies a considerable portion of the world's water resources, is related to climate change via surface water such as rivers, lakes, and marshes, and "direct" interactions, being indirectly affected through recharge. Therefore, in order to quantify the effects of climate change on groundwater resources, it is necessary to not only predict the main variables of climate change but to also accurately predict the underground rainfall recharge quantity. In this paper, the authors selected a relevant climate change scenario, In this context, the authors selected A1B from the Special Report on Emission Scenario (SRES) which is distributed at Korea Meteorological Administration. By using data on temperature, rainfall, soil, and land use, the groundwater recharge rate for the research area was estimated by period and embodied as geographic information system (GIS). In order to calculate the groundwater recharge quantity, Visual HELP3 was used as main model for groundwater recharge, and the physical properties of weather, temperature, and soil layers were used as main input data. General changes to water circulation due to climate change have already been predicted. In order to systematically solve problems associated with how the groundwater resource circulation system should be reflected in future policies pertaining to groundwater resources, it may be urgent to recalculate the groundwater recharge quantity and consequent quantity for using via prediction of climate change in Korea in the future and then reflection of the results. The space-time calculation of changes to the groundwater recharge quantity in the study area may serve as a foundation to present additional measures for the improved management of domestic groundwater resources.

  • PDF

Development of a Failure Probability Model based on Operation Data of Thermal Piping Network in District Heating System (지역난방 열배관망 운영데이터 기반의 파손확률 모델 개발)

  • Kim, Hyoung Seok;Kim, Gye Beom;Kim, Lae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.322-331
    • /
    • 2017
  • District heating was first introduced in Korea in 1985. As the service life of the underground thermal piping network has increased for more than 30 years, the maintenance of the underground thermal pipe has become an important issue. A variety of complex technologies are required for periodic inspection and operation management for the maintenance of the aged thermal piping network. Especially, it is required to develop a model that can be used for decision making in order to derive optimal maintenance and replacement point from the economic viewpoint in the field. In this study, the analysis was carried out based on the repair history and accident data at the operation of the thermal pipe network of five districts in the Korea District Heating Corporation. A failure probability model was developed by introducing statistical techniques of qualitative analysis and binomial logistic regression analysis. As a result of qualitative analysis of maintenance history and accident data, the most important cause of pipeline damage was construction erosion, corrosion of pipe and bad material accounted for about 82%. In the statistical model analysis, by setting the separation point of the classification to 0.25, the accuracy of the thermal pipe breakage and non-breakage classification improved to 73.5%. In order to establish the failure probability model, the fitness of the model was verified through the Hosmer and Lemeshow test, the independent test of the independent variables, and the Chi-Square test of the model. According to the results of analysis of the risk of thermal pipe network damage, the highest probability of failure was analyzed as the thermal pipeline constructed by the F construction company in the reducer pipe of less than 250mm, which is more than 10 years on the Seoul area motorway in winter. The results of this study can be used to prioritize maintenance, preventive inspection, and replacement of thermal piping systems. In addition, it will be possible to reduce the frequency of thermal pipeline damage and to use it more aggressively to manage thermal piping network by establishing and coping with accident prevention plan in advance such as inspection and maintenance.

A Dynamic Management Method for FOAF Using RSS and OLAP cube (RSS와 OLAP 큐브를 이용한 FOAF의 동적 관리 기법)

  • Sohn, Jong-Soo;Chung, In-Jeong
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.2
    • /
    • pp.39-60
    • /
    • 2011
  • Since the introduction of web 2.0 technology, social network service has been recognized as the foundation of an important future information technology. The advent of web 2.0 has led to the change of content creators. In the existing web, content creators are service providers, whereas they have changed into service users in the recent web. Users share experiences with other users improving contents quality, thereby it has increased the importance of social network. As a result, diverse forms of social network service have been emerged from relations and experiences of users. Social network is a network to construct and express social relations among people who share interests and activities. Today's social network service has not merely confined itself to showing user interactions, but it has also developed into a level in which content generation and evaluation are interacting with each other. As the volume of contents generated from social network service and the number of connections between users have drastically increased, the social network extraction method becomes more complicated. Consequently the following problems for the social network extraction arise. First problem lies in insufficiency of representational power of object in the social network. Second problem is incapability of expressional power in the diverse connections among users. Third problem is the difficulty of creating dynamic change in the social network due to change in user interests. And lastly, lack of method capable of integrating and processing data efficiently in the heterogeneous distributed computing environment. The first and last problems can be solved by using FOAF, a tool for describing ontology-based user profiles for construction of social network. However, solving second and third problems require a novel technology to reflect dynamic change of user interests and relations. In this paper, we propose a novel method to overcome the above problems of existing social network extraction method by applying FOAF (a tool for describing user profiles) and RSS (a literary web work publishing mechanism) to OLAP system in order to dynamically innovate and manage FOAF. We employed data interoperability which is an important characteristic of FOAF in this paper. Next we used RSS to reflect such changes as time flow and user interests. RSS, a tool for literary web work, provides standard vocabulary for distribution at web sites and contents in the form of RDF/XML. In this paper, we collect personal information and relations of users by utilizing FOAF. We also collect user contents by utilizing RSS. Finally, collected data is inserted into the database by star schema. The system we proposed in this paper generates OLAP cube using data in the database. 'Dynamic FOAF Management Algorithm' processes generated OLAP cube. Dynamic FOAF Management Algorithm consists of two functions: one is find_id_interest() and the other is find_relation (). Find_id_interest() is used to extract user interests during the input period, and find-relation() extracts users matching user interests. Finally, the proposed system reconstructs FOAF by reflecting extracted relationships and interests of users. For the justification of the suggested idea, we showed the implemented result together with its analysis. We used C# language and MS-SQL database, and input FOAF and RSS as data collected from livejournal.com. The implemented result shows that foaf : interest of users has reached an average of 19 percent increase for four weeks. In proportion to the increased foaf : interest change, the number of foaf : knows of users has grown an average of 9 percent for four weeks. As we use FOAF and RSS as basic data which have a wide support in web 2.0 and social network service, we have a definite advantage in utilizing user data distributed in the diverse web sites and services regardless of language and types of computer. By using suggested method in this paper, we can provide better services coping with the rapid change of user interests with the automatic application of FOAF.

An Energy Efficient Cluster Management Method based on Autonomous Learning in a Server Cluster Environment (서버 클러스터 환경에서 자율학습기반의 에너지 효율적인 클러스터 관리 기법)

  • Cho, Sungchul;Kwak, Hukeun;Chung, Kyusik
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.6
    • /
    • pp.185-196
    • /
    • 2015
  • Energy aware server clusters aim to reduce power consumption at maximum while keeping QoS(Quality of Service) compared to energy non-aware server clusters. They adjust the power mode of each server in a fixed or variable time interval to let only the minimum number of servers needed to handle current user requests ON. Previous studies on energy aware server cluster put efforts to reduce power consumption further or to keep QoS, but they do not consider energy efficiency well. In this paper, we propose an energy efficient cluster management based on autonomous learning for energy aware server clusters. Using parameters optimized through autonomous learning, our method adjusts server power mode to achieve maximum performance with respect to power consumption. Our method repeats the following procedure for adjusting the power modes of servers. Firstly, according to the current load and traffic pattern, it classifies current workload pattern type in a predetermined way. Secondly, it searches learning table to check whether learning has been performed for the classified workload pattern type in the past. If yes, it uses the already-stored parameters. Otherwise, it performs learning for the classified workload pattern type to find the best parameters in terms of energy efficiency and stores the optimized parameters. Thirdly, it adjusts server power mode with the parameters. We implemented the proposed method and performed experiments with a cluster of 16 servers using three different kinds of load patterns. Experimental results show that the proposed method is better than the existing methods in terms of energy efficiency: the numbers of good response per unit power consumed in the proposed method are 99.8%, 107.5% and 141.8% of those in the existing static method, 102.0%, 107.0% and 106.8% of those in the existing prediction method for banking load pattern, real load pattern, and virtual load pattern, respectively.

Evaluation on the adsorption and desorption capabilities of filter media applied to the nonpoint source pollutant management facilities (비점오염 저감시설에 적용되는 여재의 흡착 및 탈착 능력 평가)

  • Moon, Soyeon;Hong, Jungsun;Choi, Jiyeon;Yu, Gigyung;Kim, Lee Hyung
    • Journal of Wetlands Research
    • /
    • v.17 no.3
    • /
    • pp.228-236
    • /
    • 2015
  • Urbanization causes many environmental, hydrological and ecological problems such as distortion of the natural water circulation system, increase in nonpoint source pollutants in stormwater runoff, degradation of surface water quality, and damage to the ecosystem. Due to the increase in impervious surface by urbanization, developed countries apply low impact development (LID) techniques as important alternatives to reduce the impacts of urbanization. In Korea, LID techniques were employed since 2012 in order to manage nonpoint source pollutants. LID technology is a technique for removing pollutants using a variety of physical, chemical and biological mechanisms in plants, microorganisms and filter media with the reduced effluence of stormwater runoff by mimicking natural water circulation system. These LID facilities are used in a variety of filter media, but an assessment has not been carried out for the comprehensive comparison evaluation of adsorption and desorption characteristics for the pollutant removal capacity. Therefore, this study was conducted to analyze the adsorption and desorption characteristics of various filter media used in the LID facilities such as sand, gravel, bioceramic, wood chips and bottom ash etc. in reducing heavy metals(Pb, Cu). In this study, the adsorption affinity for Pb in all filter media was higher than Cu. Pseudo second order equation and Langmuir-3 isotherm are more applicable in the adsorption kinetic model and adsorption isotherm model, respectively. As a result of the desorption experiment, the filter media does not exceed KSLT which is the hazardous substance leaching limit, showing the capability of the filter media in LID. The bioceramic and woodchip as filter medias were evaluated and exhibited excellent adsorption capacity for Pb.

Evaluation of Correlation between Chlorophyll-a and Multiple Parameters by Multiple Linear Regression Analysis (다중회귀분석을 이용한 낙동강 하류의 Chlorophyll-a 농도와 복합 영향인자들의 상관관계 분석)

  • Lim, Ji-Sung;Kim, Young-Woo;Lee, Jae-Ho;Park, Tae-Joo;Byun, Im-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.5
    • /
    • pp.253-261
    • /
    • 2015
  • In this study, Chlorophyll-a (chl-a) prediction model and multiple parameters affecting algae occurrence in Mulgeum site were evaluated by statistical analysis using water quality, hydraulic and climate data at Mulgeum site (1998~2008). Before the analysis, control chart method and effect period of typhoon were adopted for improving reliability of the data. After data preprocessing step two methods were used in this study. In method 1, chl-a prediction model was developed using preprocessed data. Another model was developed by Method 2 using significant parameters affecting chl-a after data preprocessing step. As a result of correlation analysis, water temperature, pH, DO, BOD, COD, T-N, $NO_3-N$, $PO_4-P$, flow rate, flow velocity and water depth were revealed as significant multiple parameters affecting chl-a concentration. Chl-a prediction model from Method 1 and 2 showed high $R^2$ value with 0.799 and 0.790 respectively. Validation for each prediction model was conducted with the data from 2009 to 2010. Training period and validation period of Method 1 showed 20.912 and 24.423 respectively. And Method 2 showed 21.422 and 26.277 in each period. Especially BOD, DO and $PO_4-P$ played important role in both model. So it is considered that analysis of algae occurrence at Mulgeum site need to focus on BOD, DO and $PO_4-P$.

Classification of Carbon-Based Global Marine Eco-Provinces Using Remote Sensing Data and K-Means Clustering (K-Means Clustering 기법과 원격탐사 자료를 활용한 탄소기반 글로벌 해양 생태구역 분류)

  • Young Jun Kim;Dukwon Bae;Jungho Im ;Sihun Jung;Minki Choo;Daehyeon Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.1043-1060
    • /
    • 2023
  • An acceleration of climate change in recent years has led to increased attention towards 'blue carbon' which refers to the carbon captured by the ocean. However, our comprehension of marine ecosystems is still incomplete. This study classified and analyzed global marine eco-provinces using k-means clustering considering carbon cycling. We utilized five input variables during the past 20 years (2001-2020): Carbon-based Productivity Model (CbPM) Net Primary Production (NPP), particulate inorganic and organic carbon (PIC and POC), sea surface salinity (SSS), and sea surface temperature (SST). A total of nine eco-provinces were classified through an optimization process, and the spatial distribution and environmental characteristics of each province were analyzed. Among them, five provinces showed characteristics of open oceans, while four provinces reflected characteristics of coastal and high-latitude regions. Furthermore, a qualitative comparison was conducted with previous studies regarding marine ecological zones to provide a detailed analysis of the features of nine eco-provinces considering carbon cycling. Finally, we examined the changes in nine eco-provinces for four periods in the past (2001-2005, 2006-2010, 2011-2015, and 2016-2020). Rapid changes in coastal ecosystems were observed, and especially, significant decreases in the eco-provinces having higher productivity by large freshwater inflow were identified. Our findings can serve as valuable reference material for marine ecosystem classification and coastal management, with consideration of carbon cycling and ongoing climate changes. The findings can also be employed in the development of guidelines for the systematic management of vulnerable coastal regions to climate change.

Subject-Balanced Intelligent Text Summarization Scheme (주제 균형 지능형 텍스트 요약 기법)

  • Yun, Yeoil;Ko, Eunjung;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.141-166
    • /
    • 2019
  • Recently, channels like social media and SNS create enormous amount of data. In all kinds of data, portions of unstructured data which represented as text data has increased geometrically. But there are some difficulties to check all text data, so it is important to access those data rapidly and grasp key points of text. Due to needs of efficient understanding, many studies about text summarization for handling and using tremendous amounts of text data have been proposed. Especially, a lot of summarization methods using machine learning and artificial intelligence algorithms have been proposed lately to generate summary objectively and effectively which called "automatic summarization". However almost text summarization methods proposed up to date construct summary focused on frequency of contents in original documents. Those summaries have a limitation for contain small-weight subjects that mentioned less in original text. If summaries include contents with only major subject, bias occurs and it causes loss of information so that it is hard to ascertain every subject documents have. To avoid those bias, it is possible to summarize in point of balance between topics document have so all subject in document can be ascertained, but still unbalance of distribution between those subjects remains. To retain balance of subjects in summary, it is necessary to consider proportion of every subject documents originally have and also allocate the portion of subjects equally so that even sentences of minor subjects can be included in summary sufficiently. In this study, we propose "subject-balanced" text summarization method that procure balance between all subjects and minimize omission of low-frequency subjects. For subject-balanced summary, we use two concept of summary evaluation metrics "completeness" and "succinctness". Completeness is the feature that summary should include contents of original documents fully and succinctness means summary has minimum duplication with contents in itself. Proposed method has 3-phases for summarization. First phase is constructing subject term dictionaries. Topic modeling is used for calculating topic-term weight which indicates degrees that each terms are related to each topic. From derived weight, it is possible to figure out highly related terms for every topic and subjects of documents can be found from various topic composed similar meaning terms. And then, few terms are selected which represent subject well. In this method, it is called "seed terms". However, those terms are too small to explain each subject enough, so sufficient similar terms with seed terms are needed for well-constructed subject dictionary. Word2Vec is used for word expansion, finds similar terms with seed terms. Word vectors are created after Word2Vec modeling, and from those vectors, similarity between all terms can be derived by using cosine-similarity. Higher cosine similarity between two terms calculated, higher relationship between two terms defined. So terms that have high similarity values with seed terms for each subjects are selected and filtering those expanded terms subject dictionary is finally constructed. Next phase is allocating subjects to every sentences which original documents have. To grasp contents of all sentences first, frequency analysis is conducted with specific terms that subject dictionaries compose. TF-IDF weight of each subjects are calculated after frequency analysis, and it is possible to figure out how much sentences are explaining about each subjects. However, TF-IDF weight has limitation that the weight can be increased infinitely, so by normalizing TF-IDF weights for every subject sentences have, all values are changed to 0 to 1 values. Then allocating subject for every sentences with maximum TF-IDF weight between all subjects, sentence group are constructed for each subjects finally. Last phase is summary generation parts. Sen2Vec is used to figure out similarity between subject-sentences, and similarity matrix can be formed. By repetitive sentences selecting, it is possible to generate summary that include contents of original documents fully and minimize duplication in summary itself. For evaluation of proposed method, 50,000 reviews of TripAdvisor are used for constructing subject dictionaries and 23,087 reviews are used for generating summary. Also comparison between proposed method summary and frequency-based summary is performed and as a result, it is verified that summary from proposed method can retain balance of all subject more which documents originally have.