• Title/Summary/Keyword: 결함탐상

Search Result 227, Processing Time 0.019 seconds

Investigation of CT Imaging Technique Using Guided Wave (유도초음파를 이용한 판 구조물 CT 영상화 기법)

  • Yoon, Hyun-Woo;Kang, To;Kim, Hak-Joon;Song, Sung-Jin;Shin, Ho-Sang
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.3
    • /
    • pp.11-18
    • /
    • 2011
  • Ultrasonic guided waves have been widely utilized for long range inspection of structures. Recently, many researchers have paid attention to the tomographic imaging using guided wave for the diagnosis of plate-like structures because group velocity of guided waves is changed by central frequency of transducer and thickness of plate. Currently, Delay and Sum imaging technique and MVDR(Minimum Variance Distortionless Response) imaging technique are performed. So the performance of these two imaging techniques are investigated in this paper.

The Detection of the Steam Generator Tubing Defects in the Sludge Piles by the Eddy Current Testing (과전류탐상법(過電流探傷法)에 의한 Sludge Pile속의 결함검출(缺陷檢出))

  • Ahn, Byeong-Wan;Yim, Chang-Jae;Koo, Kil-Mo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.7 no.2
    • /
    • pp.16-26
    • /
    • 1988
  • In the in-service inspections for the steam generator tubing of the nuclear power plants by the Eddy Current Testing, the ECT signals are evaluated by their phase. If oxidized copper sludge is piled up in the secondary side, however, big sludge signals occur in large quantities which originate from copper layers forming in the sludge piles due to the pitting mechanism of the steam generator tubing by $Cu^{2+}$, and modulate the defect signals, causing the difficulty in the defect detection. In this research, sludge specimens were prepared considering the formations of the sludge signal sources and multi-frequency ECT mixing experiments by different choices of the mixing standards were performed. The results were found to be 5 to 30% of the tube wall thickness over-estimated. Experiments using the ring-type mixing standards showed the least errors of all, while those with the mixing standards nearing the sludge conditions brought larger errors as a result of the influence of the interference between the defect and the copper layers.

  • PDF

Remote Field Energy Flow Path at Nonmagnetic Coaxial Tubes (비자성체 이중관의 원격장 에너지 전달 경로)

  • Yi, Jae-Kyung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.5
    • /
    • pp.526-531
    • /
    • 2001
  • The flow of remote field eddy current energy is studied at nonmagnetic coaxial tubes by using both experiments and finite element calculations based on commercial software package. The results showed that remote field eddy current energy at coaxial tubes flow along over the outer surface of external tube, not through the gap between internal and external tubes. This means that the through wall transmission characteristic of remote field eddy current testing (RFECT) is still valid at tube in tube configurations and the RFECT could be potential nondestructive technique for crack detection, spacer location and gap sizing at the coaxial CANDU fuel channel tubes.

  • PDF

A Study on Welding Union by Welding Fume Shape Measurement (용접 Fume 형상 측정에 따른 용접 결합에 관한 연구)

  • Kim J.Y.;Choi C.J.;Kwak N.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.35-36
    • /
    • 2006
  • In Nd:YAG laser welding, evaluation methods of welding flaw are various. But, the method due to fume shape is difficult to classification of welding flaw. The Nd:YAG laser process is known to have high speed and deep penetration capability to become one of the most advanced welding technologies. At the present time, some methods are studied for measurement of fume shape by using high-speed camera and photo diode. This paper describes the machining characteristics of SM45C carbon steel welding by use of an Nd:YAG laser. In spite of its good mechanical characteristics, SM45C carbon steel has a high carbon contents and suffers a limitation in the industrial application due to the poor welding properties. In this study, fume shape was measured by infrared thermal camera that is non-contact/non-destructive thermal measurement equipment through change of laser generating power, speed, focus. Weld was performed on bead-on method. Measurement results are compared as two equipments. Here, two results are composed of measurement results of fume quantities due to fume shape by infrared thermal camera and inspection results of weld bead include weld flaws by ultrasonic inspector.

  • PDF

Technology for the Detection of Corrosion Defects in Buried Pipes of Nuclear Power Plants with 3D FEM (3D 유한요소법을 이용한 원전 매설배관 부식결함 탐상기술 개발)

  • Kim, Jae-Won;Lim, Bu-Taek;Park, Heung-Bae;Chang, Hyun-Young
    • Corrosion Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.292-300
    • /
    • 2018
  • The modeling of 3D finite elements based on CAD data has been used to detect sites of corrosion defects in buried pipes. The results generated sophisticated profiles of electrolytic potential and vectors of current distributions on the earth surface. To identify the location of defects in buried pipes, the current distribution on the earth surface was projected to a plane of incidence that was identical to the pipe locations. The locations of minimum electrolytic potential value were found. The results show adequate match between the locations of real and expected defects based on modeling. In addition, the defect size can be calculated by integrating the current density curve. The results show that the defect sizes were $0.74m^2$ and $0.69m^2$, respectively. This technology may represent a breakthrough in the detection of indirect damage in various cases involving multiple defects in size and shape, complex/cross pipe systems, multiple anodes and stray current.

Ultrasonic C-scan Technique for Nondestructive Evaluation of Spot Weld Quality (Spot용접 접합면의 초음파 비파괴평가 기법 제 1보 C-scan 기법을 중심으로)

  • Park, Ik-Gun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.14 no.2
    • /
    • pp.112-121
    • /
    • 1994
  • This paper discusses the feasibility of ultrasonic C-scan technique for nondestructive evaluation of spot weld quality. Ultrasonic evaluation for spot weld quality was performed by immersion method with the mechanical and the electronic scanning of point-focussed ultrasonic beam(25 MHz). For the sake of the approach to the quantitative measurement of nugget diameter and the discrimination of the corona bond from nugget, preliminary infinitesimal gap experiment by newton ring is tried in order to set up the optimum ultrasonic test condition. Ultrasonic image data obtained were confirmed and compared by optical microscope and SAM(Scanning Acoustic Microscope) observation of the spot-weld cross section. The results show that the nugget diameter can be measured with the accuracy of 1.0mm, and voids included in nugget can be detected to $10{\mu}m$ extent with simplicity and accuracy. Finally, it was found that it is necessary to make a profound study of definite discrimination of corona bond from nugget and the approach of quantitative evaluation of nugget diameter by utilizing the various image processing techniques.

  • PDF

Ultrasonic Flaw Detection in Turbine Rotor Disc Keyway Using Neural Network (신경회로망을 이용한 터빈로타 디스크 키웨이의 결함 검출)

  • Son, Young-Ho;Lee, Jong-O;Yoon, Woon-Ha;Lee, Byung-Woo;Seo, Won-Chan;Lee, Jong-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.1
    • /
    • pp.45-52
    • /
    • 2003
  • A number of stress corrosion cracks in turbine rotor disk keyway in power plants have been found and the necessity has been raised to detect and evaluate the cracks prior to the catastrophic failure of turbine disk. By ultrasonic RF signal analysis and using a neural network based on bark-propagation algorithm, we tried to evaluate the location, size and orientation of cracks around keyway. Because RF signals received from each reflector have a number of peaks, they were processed to have a single peak for each reflector. Using the processed RF signals, scan data that contain the information on the position of transducer and the arrival time of reflected waves from each reflector were obtained. The time difference between each reflector and the position of transducer extracted from the scan data were then applied to the back-propagation neural network. As a result, the neural network was found useful to evaluate the location, size and orientation of cracks initiated from keyway.

Measurements of Ultrasonic Velocity and Attenuation by Signal Processing Techniques in Time and Frequency Domains (시간 및 주파수 영역에서의 신호 처리 기술에 의한 초음파 속도와 감쇠의 측정)

  • Jang, Young-Su;Kim, Jin-Ho;Jeong, Hyun-Jo;Nam, Young-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.2
    • /
    • pp.118-128
    • /
    • 1999
  • There are many ultrasonic measurement methods that are used in nondestructive testing applications. Some typical applications include material property determination, microstructural characterization. and flaw detection. Ultrasonic parameters such as velocity and attenuation are most commonly required in these applications. The accuracy and repeatability of testing results are dependent on both the hardware used to generate and receive the ultrasonic waves and on the analysis software for calculating these parameters. In this study, five analysis algorithms were implemented on a computer for measuring wave speed in a pulse echo. immersion testing configuration. In velocity measurements comparisons were made between the overlap. cross-correlation. Fourier transform. Hilbert transform, wavelet transform algorithms. Velocity measurement was applied to an isotropic steel sample using the five analysis algorithms. Frequency-dependent phase/group velocity and attenuation were also measured using the Fourier transform and wavelet transform algorithms on a composite laminate containing voids.

  • PDF

Procedure Development and Qualification of the Phased Array Ultrasonic Testing for the Nuclear Power Plant Piping Weld (원자력발전소 배관 용접부 위상배열 초음파검사 절차서 개발 및 기량검증)

  • Yoon, Byung-Sik;Yang, Seung-Han;Kim, Yong-Sik;Lee, Hee-Jong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.317-323
    • /
    • 2010
  • The manual ultrasonic examination for the nuclear power plant piping welds has been demonstrated by using KPD(Korean Performance Demonstration) generic procedure. For automated ultrasonic examination, there is no generic procedure and it should be qualified by using applicable automated equipment. Until now, most of qualified procedures used pulse-echo technique and there is no qualified procedure using phased array technique. In this study, data acquisition and analysis software were developed and phased-array transducer and wedge were designed to implement phased array technique for nuclear power plant in-service inspection. The developed procedure are qualified for performance demonstration for the flaw detection, length sizing and depth sizing. The qualified procedure will be applied for the field examination in the nuclear power plant piping weld inspection.

Effects of Rectifier and Copper Grid Interference on the Detection Reliability of Coating Flaws on Buried Pipes (매설 배관 피복 결함 탐상 정확도에 미치는 인접 정류기 및 접지 구리망 간섭의 영향)

  • Kim, M.G.;Lim, B.T.;Kim, K.T.;Chang, H.Y.;Park, H.B.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.211-223
    • /
    • 2020
  • The external corrosion of buried piping can be controlled using both coating and cathodic protection. Several factors are involved in the damage and deterioration of the coating on pipes. There are many detection methods for coating defects on pipes and the direct current voltage gradient (DCVG) method is one of the most powerful methods. However, the detection reliability of DCVG can be affected by interferences such as stray current, metal objects connected to rectifiers, and copper grids. Therefore, this study focused on the interference effects of rectifiers and a copper grid on the reliability of coating flaw detection. As the length of the interference pipe connected to the rectifier increased, the reliability decreased. In contrast, as the distance between the pipe and the copper grid increased, the reliability of the coating flaw detection increased. The detection results produced by the DCVG method were discussed using current and potential simulations for a pipe with a rectifier and copper grid interference in the soil.