• Title/Summary/Keyword: 결정확률 함수

Search Result 308, Processing Time 0.03 seconds

Simulation of Hourly Precipitation using Nonhomogeneous Markov Chain Model and Derivation of Rainfall Mass Curve using Transition Probability (비동질성 Markov 모형에 의한 시간강수량 모의 발생과 천이확률을 이용한 강우의 시간분포 유도)

  • Choi, Byung-Kyu;Oh, Tae-Suk;Park, Rae-Gun;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.3
    • /
    • pp.265-276
    • /
    • 2008
  • The observed data of enough period need for design of hydrological works. But, most hydrological data aren't enough. Therefore in this paper, hourly precipitation generated by nonhomogeneous Markov chain model using variable Kernel density function. First, the Kernel estimator is used to estimate the transition probabilities. Second, wet hours are decided by transition probabilities and random numbers. Third, the amount of precipitation of each hours is calculated by the Kernel density function that estimated from observed data. At the results, observed precipitation data and generated precipitation data have similar statistic. Also, rainfall mass curve is derived by calculated transition probabilities for generation of hourly precipitation.

크레인 작업의 불확실성을 고려한 AGV 배차

  • Choe, Lee;Park, Tae-Jin;Ryu, Gwang-Ryeol
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.11a
    • /
    • pp.564-569
    • /
    • 2007
  • 자동화 컨테이너 터미널에서 안벽크레인, AGV(Automated Guided Vehicle)와 같은 하역장비의 작업은 수 많은 요인에 영향을 받으며, 이로 인해 각 장비의 작업시간을 정확하게 추정하는 것은 거의 불가능하다. 작업시간의 불확실성은 AGV 배차를 어렵게 만들고 작업효율을 떨어뜨리는 주요 원인이다. 본 논문에서는 이러한 불확실성에 대처하기 위하여 확률적 시뮬레이션 기반 AGV 배차 알고리즘을 제안한다. 제안 방안은 AGV를 배차할 때, 이후 일정 기간 동안의 AGV작업에 대해 확률적 시뮬레이션을 여러번 반복하여 수행하고 평가 값을 평균함으로써 불확실성의 영향을 줄인다. 확률적 시뮬레이션을 위해 크레인 작업시간의 불확실성을 간단한 확률함수로 모델링하고 그에 따라 크레인 작업시간을 결정한다. 또한 AGV 작업시간을 가감속, 간섭을 고려하여 추정한다. 시뮬레이션 실험을 통해 제안방안을 검증한 결과 안벽크레인의 지연이 감소함을 확인하였다.

  • PDF

Decision of Gaussian Function Threshold for Image Segmentation (영상분할을 위한 혼합 가우시안 함수 임계 값 결정)

  • Jung, Yong-Gyu;Choi, Gyoo-Seok;Heo, Go-Eun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.163-168
    • /
    • 2009
  • Most image segmentation methods are to represent observed feature vectors at each pixel, which are assumed as appropriated probability models. These models can be used by statistical estimating or likelihood clustering algorithms of feature vectors. EM algorithms have some calculation problems of maximum likelihood for unknown parameters from incomplete data and maximum value in post probability distribution. First, the performance is dependent upon starting positions and likelihood functions are converged on local maximum values. To solve these problems, we mixed the Gausian function and histogram at all the level values at the image, which are proposed most suitable image segmentation methods. This proposed algoritms are confirmed to classify most edges clearly and variously, which are implemented to MFC programs.

  • PDF

Feature Extraction and Classification using SVM for Biomedical Signal (생체 신호의 특징 추출 및 SVM을 이용한 분류)

  • 김만선;이상용
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.181-183
    • /
    • 2003
  • 최근 대용량의 데이터베이스로부터 유용한 정보를 발견하고 데이터간에 존재하는 연관성을 탐색하고 분석하는 데이터 마이닝에 관한 많은 연구들이 진행되고 있다. 다양한 생체 신호를 분석하기 위하여 데이터 마이닝 기법을 이용할 수 있다. 본 논문에서는 심전도 신호의 패턴을 분류하기 위하여 신경망 기법을 적용하였다. 최근 패턴분류에 있어서 각광을 받고 있는 SVM 모델은 학습과정에서 얻어진 확률분포를 이용하여 의사결정함수를 추정한 후 이 함수에 따라 새로운 데이터를 이원분류 하는 것으로 분류 문제에 있어서 일반화 기능이 매우 높다. 기존에 많이 이용되던 BP 모델과 비교평가 하였다.

  • PDF

Fontface Recognition Using the Font Density Function (폰트 밀도함수를 애용한 폰트 타입의 인식)

  • 진성아;주문원
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.06a
    • /
    • pp.189-191
    • /
    • 2001
  • 폰트는 텍스트 정보를 기술하는 기본 요소로서 다양한 타입에 따른 독특한 감성정보를 내재하고 있다. 본 연구는 문서에 나타나 있는 영문폰트의 분포에 따른 감성정보 자동추출 시스템의 전처리 단계로서 문서상에서 특정의 폰트를 인식하는 모듈을 소개하고자 한다. 폰트 디자이너에 생성된 대부분의 폰트는 glyph data 라고 하는 2D boundary 좌표값에 의해 그 모양(Shape)이 결정된다. 이 데이터로부터 정의된 폰트밀도함수와 각 문자가 등장하는 보편적 확률 값의 linear combination으로부터 각 폰트를 식별할 수 있다.

  • PDF

Evaluation of the Runoff Characteristics due to the Dam Operations Using Bayesian Theorem (베이지안 기법을 이용한 댐 운영 전후 유출 특성 평가)

  • Na, Wooyoung;Jeong, Jinung;Kim, So Eun;Yoo, Chulsang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.109-109
    • /
    • 2020
  • 본 연구에서는 댐 운영 전과 후의 유출 특성 변화를 평가하는 데 베이지안 기법을 이용하였다. ROM과 같은 댐 운영은 자연유량(유입량)에 대해 주어진 방법을 적용하여 수행하는 일종의 조정(수정) 과정이다. 이 과정은 무작위 변량에 해당하는 유입량을 대상으로 하며, 그 과정의 결과로 역시 유출량이라는 무작위 변량이 생성된다. 기 확정된 또는 고정된 조정(수정) 과정은 일정한 함수로 표현 가능하다. 결과적으로 이 과정은 사전확률에 우도함수를 적용하여 사후확률을 유도하는 것과 같다. 즉, 베이지안 기법의 적용과정과 다르지 않다. ROM으로는 일정률, 일정량, 일정률-일정량 ROM(Rigid ROM) 세 가지를 고려하였다. 각 ROM별 방류 특성을 고려하여 우도함수를 결정하면, 베이지안 기법을 적용하여 사후분포, 즉, 방률량의 분포함수를 유도할 수 있다. 베이지안 기법을 적용하여 유도된 결과는 ROM을 적용하여 직접 모의한 결과와 비교함으로써 검증된다. 본 연구에서는 대상 댐으로 안동댐을 선정하였으며, 안동댐에서 관측된 2010년부터 2019년까지의 10년치 유입량 자료를 이용하였다. 즉, 2010년부터 2019년까지의 안동댐 유입량 자료는 댐 운영 이전의 유출특성을 대변하고, 모의된 유출량은 댐 운영 이후의 유출특성을 대변한다.

  • PDF

Evaluation of seismic fragility models for cut-and-cover railway tunnels (개착식 철도 터널 구조물의 기존 지진취약도 모델 적합성 평가)

  • Yang, Seunghoon;Kwak, Dongyoup
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.1-13
    • /
    • 2022
  • A weighted linear combination of seismic fragility models previously developed for cut-and-cover railway tunnels was presented and the appropriateness of the combined model was evaluated. The seismic fragility function is expressed in the form of a cumulative probability function of the lognormal distribution based on the peak ground acceleration. The model uncertainty can be reduced by combining models independently developed. Equal weight is applied to four models. The new seismic fragility function was developed for each damage level by determining the median and standard deviation, which are model metrics. Comparing fragility curves developed for other bored tunnels, cut-and-cover tunnels for high-speed railway system have a similar level of fragility. We postulated that this is due to the high seismic design standard for high-speed railway tunnel.

공간적 토지이용 예측을 위한 모형화 연구

  • Kim, Eui-Hong
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.101-106
    • /
    • 1993
  • 본 연구의 목적은 토지자원의 유효한 개발과 관리를 위해 원격탐사 자료 및 지상자료를 이용하여 토지 이용의 예측 모형을 정립하고 실제로 제주도 지역에 적용하여 그 실증을 거치는 것이었다. 본 토형은 계절분석(multi-date processing) 및 다중분석 (multi-file processing)기법을 채택하고 Markov의 확률 이전 계산법 및 판별 함수 (discriminant function) 계산법으로부터 합성 출현된 공간적/시간적 토지이용 투영방법을 채택하였다. 판별 함수 계산법은 토지이용 변화상의 최다 경향치를 산출하기 위해 제주도 경관 평면(landscape plane) 전지역의 각 화소(pixel)에 적용되고, 확률 이전 계산법은 특정 미래 시간 간극상에서 상이한 토지이용으로 변화하는 이들 화소의 수량을 결정한다. 본 합성 모형은 이렇게 토지이용 변화성(정성적)과 그 화소의 수량(정량적)을 결합하여 경관 평면상에서 미래의 토지이용 예측을 가능케하는 것이다.

  • PDF

Variational Bayesian Methods for Learning HMM with Mixture of Gaussian Outputs (가우시안 혼합 출력 HMM을 위한 변분 베이지안 방법)

  • O Jangmin;Zhang Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.619-621
    • /
    • 2005
  • 은닉 마코프 모델은 이산 동역학을 표현할 수 있는 확률 모형이다. 우도 함수 최적화를 수행하는 전통적인 Baum-Welch 학습 알고리즘은 국소해로 수령하기 쉬우며, 우도함수의 특성상 복잡한 모델을 선호하는 바이어스가 존재한다. 베이지안 프레임워크에서는 파라미터를 랜덤 변수로 보고 이에 대한 사후 확률 분포를 추정하여 이 문제를 해결할 수 있다. 본 논문에서는 베이지안 추정을 위한 결정론적 근사화 기법인 변분 베이지안 방법을 이용, 출력 노드에 가우시안 혼합 노드를 지니는 일반화된 HMM의 추론 방법을 유도한다. 인공 데이터에 대한 실험을 통해, 본 방법이 효과적인 HMM 학습을 수행할 수 있음을 보인다.

  • PDF

Approximation Algorithm for Multi Agents-Multi Tasks Assignment with Completion Probability (작업 완료 확률을 고려한 다수 에이전트-다수 작업 할당의 근사 알고리즘)

  • Kim, Gwang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.2
    • /
    • pp.61-69
    • /
    • 2022
  • A multi-agent system is a system that aims at achieving the best-coordinated decision based on each agent's local decision. In this paper, we consider a multi agent-multi task assignment problem. Each agent is assigned to only one task and there is a completion probability for performing. The objective is to determine an assignment that maximizes the sum of the completion probabilities for all tasks. The problem, expressed as a non-linear objective function and combinatorial optimization, is NP-hard. It is necessary to design an effective and efficient solution methodology. This paper presents an approximation algorithm using submodularity, which means a marginal gain diminishing, and demonstrates the scalability and robustness of the algorithm in theoretical and experimental ways.