• Title/Summary/Keyword: 견운모대

Search Result 53, Processing Time 0.027 seconds

Characterization of Sericite Occurred in the Bobae Mine, Pusan, Korea (부산 보배광산산 견운모의 광물학적 특성)

  • Moon, Ji-Won;Moon, Hi-Soo
    • Economic and Environmental Geology
    • /
    • v.29 no.2
    • /
    • pp.129-138
    • /
    • 1996
  • The ores of the Bobae mine are mainly composed of sericite and quartz, and with appreciable amount of some other minerals such as andalusite. pyrophyllite, and albite, etc.. Sericite occurs in various a1teration zones having different crystal size and habit. Sericites can be c1assified into two types based on the crystal size; fine-grained and coarse-grained sericite. Fine-grained sericite occurs as an aggregate. Mineralogical characterizations of both types of sericites have been studied with various methods. Lattice parameters of two types of sericites occurred in various alteration zones are almost identical. but b parameter of coarse-grained sericite appears to be slight1y bigger than that of fine-grained aggregates. Average structural formula of fine- and coarse-grained sericite is $K_{1.44}Al_{3.86}(Si_{6.35}Al_{1.65})O_{20}(OH)_4$ and $K_{1.71}Al_{3.82}(Si_{6.20}Al_{1.80})O_{20}(OH)_4$, respectively. Structural formulae of coarse-grained sericites are close to that of muscovite. Infrared spectra show that there is slight distinction between sericites occurred in andalusite-pyrophyllite zone and other subzones. IR spectra of sericites due to Si-O vibration ($540{\sim}530cm^{-1}$) tend to shift to smaller wavenumber side from center to outer alteration zone. All samples have litt1e or no interstratified minerals. and this is demonstrated by Ir and DTA-TG results. It indicates that the Bobae mine is formed at relatively high temperature. That the ratio of quartz to sericite in ores varies greatly indicates that several discontinuous hydrothermal alteration processes have been involved.

  • PDF

Occurrence and Mineralogy of Sericite Deposit in the Hongjesa Granite from the Bonghwa Area in Kyungsangbuk-do, Korea (경북 봉화지역 홍제사 화강암 내에 배태하는 견운모광상의 산상 및 구성광물)

  • Oh, Ji-Ho;Hwang, Jin-Yeon;Koh, Sang-Mo;Kwack, Kyu-Won;Lee, Hyo-Min;Chi, Se-Jung
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.67-83
    • /
    • 2008
  • The sericite ore deposits formed in the Precambrian granitic rock at the Bonghwa area, Kyungsangbuk-do, South Korea. The geochemical and mineralogical characteristics of sericite occurred in Daehyun and Seonghwang mine were analyzed using petrographic microscope, XRD, EPMA, XRF and ICP. An alteration mechanism was also studied. Sericitization occurred within the granitic rock by hydrothermal alteration. From the careful study on the occurrence and mineral assemblage, four alteration zone were clearly identified. These zones reflect progressive hydrothermal alteration process. All sericites belong to $2M_1$ polytype and their mineralogical and geochemical properties are close to illite. The sericite ores show various colors, but the characteristics of major element compositions and crystal structures are not different. The trace element analysis, however, indicates that the difference in color attribute to the abundance of Cr and Ti: bluish green colored sericite are enriched in Cr and blackish green colored sericite enriched in Ti. The formation of sericite ore deposit in the granitic rocks are closely relate to fracture system such as fault and joint. It is considered that the sericite ore deposits in this area were formed by very simple hydrothermal alteration occurred along the fracture zones in granitic rocks with absence of other hydrothermally altered minerals such as kaolin and pyrophyllite.

Alteration Zoning, Mineral Assemblage and Geochemistry of the Hydrothermal Clay Deposits Related to Cretaceous Felsic Magmatism in the Haenam Area, Southwest Korea (한국 서남부, 해남지역에서 백악기 산성마그마티즘에 관련된 열수점토광상의 누대분배, 광물조합의 지구화학적 연구)

  • Kim, In Joon
    • Economic and Environmental Geology
    • /
    • v.25 no.4
    • /
    • pp.397-416
    • /
    • 1992
  • In the present study, three clay deposits, named the Seongsan, Ogmaesan and Haenam deposits, were investigated. The altered zones are recognized in the hydrothermally altered rocks of the clay deposits from the center of the alteration to the margin: Kaolin, Kaolin-Quartz, Quartz, Sericite and Chlorite zones in the Seongsan deposits; Quartz zone, Alunite zone, Kaolin zone, Sericite zone and Chlorite zone in the Ogmaesan deposits; Quartz zone, Pyrophyllite zone, Sericite zone and Chlorite zone in the Haenam deposits. These zones can be grouped into two types of alteration: Acidic alteration such as Pyrophyllite zone, Alunite zone, Quartz zone, Kaolin zone, Kaolin-Quartz zone and a part of Sericite zone; Propylitic alteration such as Chlorite zone and a part of Sericite zone. All clay deposits belong to high-sulfidation (acid-sulfate) system. The rocks of the acidic alterations are composed of pyrophyllite, alunite, kaolin minerals, sericite, quartz and pyrite. On the basis of bulk chemical compositions, it was found that some components such as $SiO_2$, $TiO_2$, $Fe_2O_3$, FeO, MgO, CaO, $K_2O$ and $Na_2O$ were mobilized considerably from the original rocks. The mobility of these major elements is related to, and controls, mineral assemblages in each altered zone. Polytypes of sericite are determined as $2M_1$ and 1M by X-ray diffraction method. The amount of $2M_1$ is nearly equal to that of 1M in the Seongsan deposits whereas $2M_1$ is less and higher than that of 1M in the Ogmaesan and the Haenam deposits. These facts indicate that formation temperature of sericite is relatively high in the Haenam deposits, moderate in the Seongsan deposits, and low in the Ogmaesan deposits. The ratios of Na/(K+Na) for alunite in the Ogmaesan deposits determined by electron microprobe analyzer (EPMA) are higher than those in the Seongsan deposits. Thus, the alunite of the Ogmaesan deposits must have been formed from the solutions with relatively high aqueous Na/(K+Na) ratios and low pH at a high temperature rather than that of the Seongsan deposits. From all data, it is clarified that alunite is hypogene in origin, and has been formed by oxidation of hydrogen sulfide in the steam-heated environment, and that alunite has been produced by the spectacular solfataric alteration observed at the surface of some present-day hydrothermal systems.

  • PDF

Hydrothermal Alteration and Its Cenetic Implication in the Casado Volcanic-hosted Epithermal Cold-Silver Deposit: Use in Exploration (가사도 화산성 천열수 금은광상의 열수변질대 분포 및 성인: 탐사에의 적용)

  • 김창성;최선규;최상훈;이인우
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.205-220
    • /
    • 2002
  • The gold-silver deposits in the Casado district were formed in the sheeted and stockwork quartz veins which fill the fault fractures in volcanic rocks. K-Ar dating of alteration sericite (about 70 Ma) indicates a Late Cretaceous age for ore mineralization. These veins are composed of quartz, adularia, carbonate, and minor of pyrite, sphalerite, chalcopyrite, galena, Ag-sulfosalts (argentite, pearceite, Ag-As-Sb-S system), and electrum. These veins are characterized by chalcedonic, comb, crustiform and feathery textures. Based on the hydrothermally altered mineral assemblages, regional alteration zoning associated with mineralization in the Gasado district is defined as four zones; advanced argillic (kaolin mineral-alunite-quartz), argillic (kaolin mineral-quartz), phyllic (quartz-sericite-pyrite) and propylitic (chlorite-carbonate-quartz-feldspar-pyroxene) zone. Phyllic and propylitic zones is distributed over the study area. However, advanced argillic zone is restricted to the shallow surface of the Lighthouse vein. Compositions of electrum ranges from 14.6 to 53.7 atomic % Au, and the depositional condition for mineralization are estimated in terms of both temperature and sulfur fugacity: T=245。$~285^{\circ}C$, logf $s_2$=$10^{-10}$ ~ $10^{-12}$ Fluid inclusion and stable isotope data show that the auriferous fluids were mixed with cool and dilute (158。~253$^{\circ}C$ and 0.9~3.4 equiv. wt. % NaCl) meteoric water ($\delta^{18}$ $O_{water}$=-10.1~8.0$\textperthousand$, $\delta$D=-68~64$\textperthousand$). These results harmonize with the hot-spring type of the low-sulfidation epithermal deposit model, and strongly suggest that Au-Ag mineralization in the Gasado district was formed in low-sulfidation alteration type environment at near paleo-surface.

The Cenetic Implication of Hydrothermal Alteration of Epithermal Deposits from the Mugeuk Area (무극 지역 천열수 광상 열수변질대의 성인적 의미)

  • 박상준;최선규;이동은
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.265-280
    • /
    • 2003
  • The Mugeuk mineralized area that associated with the pull-apart type Cretaceous Eumseong basin is composed of several gold-silver vein deposits that are emplaced in late Cretaceous biotite granite. The gold-silver deposits in the area show various hydrothermal alteration zones as well as Au/Ag ratios and ore mineralogy. The Geumbong mine showing relatively high gold fineness is composed of multiple veins and show alteration pattern; vein \longrightarrow phyllic \longrightarrow subphyllic \longrightarrow propylitic \longrightarrow subpropylitic zone. In contrast, The Taegeuk mines show the low fineness values, in far southern part are characterized by increasing tendency of simple and/or stockwork veins. The deposit displays alteration pattern; vein \longrightarrow propylitic \longrightarrow subpropylitic zone. Variations of alteration zone with depth show that phyllic zone are dominant in deeper level and propylitic zone sporadically overlapped by argillic zone are dominant in shallow level. The differences of alteration pattern between the gold-silver deposits are reflect the evolution of the hydrothermal fluids; the ore-forming fluids of the Geumbong mine are at relatively high temperature and salinity and highly-evolved meteoric water, developing phyllic zone, the Taegeuk mine containing greater amounts of less-evolved meteoric waters shows relatively low temperature and salinity in ore-forming fluids, developing propylitic zone. The various physicochemical environment for gold-silver mineralization in the Mugeuk mineralized area is due to proximity from heat source area (Mugeuk mine) to marginal area (Taegeuk mine) in a geothermal field. Therefore, it is suggested that the criteria for project exploration in the area are to focus on the area proximal to heat source and phyllic zone.

Geochemical Study on the Naturally Originating Fluorine Distributed in the Area of Yongyudo and Sammokdo, Incheon (인천 용유도와 삼목도 지역 내 분포하는 자연기원 불소에 대한 지구화학적 연구)

  • Lee, Jong-Hwan;Jeong, Jong-Ok;Kim, Kun-Ki;Lee, Sang-Woo;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.52 no.4
    • /
    • pp.275-290
    • /
    • 2019
  • Geochemical study was conducted to elucidate the origin of fluorine (F) distributed in the rocks within the four areas of Yongyudo and Sammokdo, Incheon, which have been used as the source area of land reclamation for the $3^{rd}$ and $4^{th}$ stage construction sites of the Incheon International Airport. The main geology of the study area is Triassic biotite granite. Fluorine is contained at high levels in biotite granite, mylonite, and dykes (andesite and, basaltic-andesite). Furthermore, the higher concentrations of fluorine in the biotite granite can be contributed to fluorite. The results of microscopic analyses reveal that the fluorite was mostly observed as small vienlets together with quartz. This features support that fluorite was naturally formed due to the secondary process of hydrothermal fluids. In addition, fluorine was investigated to be highly enriched in a large amount of mica within the veins. In the case of mylonite, a high levels of fluorine was contributed to a large amount of sericite. The sericites contained in the mylointe, differently to those of the biotite granite, filled the micro-fractures of quartz formed as a result of mylonitization and included small cataclastic quartz grains. This indicates that fluorine was naturally enriched due to the alteration of hydrothermal fluids filling fractured zones formed by mylonitization. Consequently, the results of petrological and mineralogical study confirm that the fluorine distributed in the rocks within the Yongyudo and Sammokdo originated naturally.

Element Dispersion and Wallrock Alteration from Samgwang Deposit (삼광광상의 모암변질과 원소분산)

  • Yoo, Bong-Chul;Lee, Gil-Jae;Lee, Jong-Kil;Ji, Eun-Kyung;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.42 no.3
    • /
    • pp.177-193
    • /
    • 2009
  • The Samgwang deposit consists of eight massive mesothermal quartz veins that filled NE and NW-striking fractures along fault zones in Precambrian granitic gneiss of the Gyeonggi massif. The mineralogy and paragenesis of the veins allow two separate discrete mineralization episodes(stage I=quartz and calcite stage, stage II-calcite stage) to be recognized, temporally separated by a major faulting event. The ore minerals are contained within quartz and calcite associated with fracturing and healing of veins that occurred during both mineralization episodes. The hydrothermal alteration of stage I is sericitization, chloritization, carbonitization, pyritization, silicification and argillization. Sericitic zone occurs near and at quartz vein and include mainly sericite, quartz, and minor illite, carbonates and chlorite. Chloritic zone occurs far from quartz vein and is composed of mainly chlorite, quartz and minor sericite, carbonates and epidote. Fe/(Fe+Mg) ratios of sericite and chlorite range 0.45 to 0.50(0.48$\pm$0.02) and 0.74 to 0.81(0.77$\pm$0.03), and belong to muscovite-petzite series and brunsvigite, respectiveIy. Calculated $Al_{IV}$-FE/(FE+Mg) diagrams of sericite and chlorite suggest that this can be a reliable indicator of alteration temperature in Au-Ag deposits. Calculated activities of chlorite end member are $a3(Fe_5Al_2Si_3O_{10}(OH)_6$=0.0275${\sim}$0.0413, $a2(Mg_5Al_2Si_3O_{10}(OH)_6$=1.18E-10${\sim}$7.79E-7, $a1(Mg_6Si_4O_{10}(OH)_6$=4.92E-10${\sim}$9.29E-7. It suggest that chlorite from the Samgwang deposit is iron-rich chlorite formed due to decreasing temperature from high temperature(T>450$^{\circ}C$). Calculated ${\alpha}Na^+$, ${\alpha}K^+$, ${\alpha}Ca^{2+}$, ${\alpha}Mg^{2+}$ and pH values during wallrock alteration are 0.0476($400^{\circ}C$), 0.0863($350^{\circ}C$), 0.0154($400^{\circ}C$), 0.0231($350^{\circ}C$), 2.42E-11($400^{\circ}C$), 7.07E-10($350^{\circ}C$), 1.59E-12($400^{\circ}C$), 1.77E-11($350^{\circ}C$), 5.4${\sim}$6.4($400^{\circ}C$), 5.3${\sim}$5.7($350^{\circ}C$)respectively. Gain elements(enrichment elements) during wallrock alteration are $TiO_2$, $Fe_2O_3(T)$,CaO, MnO, MgO, As, Ag, Cu, Zn, Ni, Co, W, V, Br, Cs, Rb, Sc, Bi, Nb, Sb, Se, Sn and Lu. Elements(Ag, As, Zn, Sc, Sb, Rb, S, $CO_2$) represents a potential tools for exploration in mesothermal and epithermal gold-silver deposits.

Occurrence and Chemical Composition of White Mica from Wallrock Alteration Zone of Janggun Pb-Zn Deposit (장군 연-아연 광상의 모암변질대에서 산출되는 백색운모의 산상 및 화학조성)

  • Bong Chul, Yoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.469-484
    • /
    • 2022
  • The Janggun Pb-Zn deposit has been known one of the four largest deposits (Yeonhwa, Shinyemi, Uljin) in South Korea. The geology of this deposit consists of Precambrian Weonnam formation, Yulri group, Paleozoic Jangsan formation, Dueumri formation, Janggum limestone formation, Dongsugok formation, Jaesan formation and Mesozoic Dongwhachi formation and Chungyang granite. This Pb-Zn deposit is hydrothermal replacement deposit in Paleozoic Janggum limestone formation. The wallrock alteration that is remarkably recognized with Pb-Zn mineralization at this deposit consists of mainly rhodochrositization and dolomitization with minor of pyritization, sericitization and chloritization. Wallrock alteration is divided into the five zones (Pb-Zn orebody -> rhodochrosite zone -> dolomite zone -> dolomitic limestone zone -> limestone or dolomitic marble) from orebody to wallrock. The white mica from wallrock alteration occurs as fine or medium aggregate associated with Ca-dolomite, Ferroan ankerite, sideroplesite, rutile, apatite, arsenopyrite, pyrite, sphalerite, galena, quartz, chlorite and calcite. The structural formular of white mica from wallrock alteration is (K0.77-0.62Na0.03-0.00Ca0.03-0.00Ba0.00Sr0.01)0.82-0.64(Al1.72-1.48Mg0.48-0.20Fe0.04-0.01Mn0.03-0.00Ti0.01-0.00Cr0.00As0.01-0.00Co0.03-0.00Zn0.03-0.00Pb0.05-0.00Ni0.01-0.00)2.07-1.92 (Si3.43-3.33Al0.67-0.57)4.00O10(OH1.94-1.80F0.20-0.06)2.00. It indicated that white mica from wallrock alteration has less K, Na and Ca, and more Si than theoretical dioctahedral micas. The white micas from wallrock alteration of Janggun Pb-Zn deposit, Yeonhwa 1 Pb-Zn deposit and Baekjeon Au-Ag deposit, and limestone of Gumoonso area correspond to muscovite and phengite and white mica from wallrock alteration of Dunjeon Au-Ag deposit corresponds to muscovite. Compositional variations in white mica from wallrock alteration of these deposits and limeston of Gumoonso area are caused by mainly phengitic or Tschermark substitution mechanism (Janggun Pb-Zn deposit), mainly phengitic or Tschermark substitution and partly illitic substitution mechanism (Yeonhwa 1 Pb-Zn deposit, Dunjeon Au-Ag deposit and Baekjeon Au-Ag deposit), and mainly phengitic or Tschermark substitution and partly illitic substitution or Na+ <-> K+ substitution mechanism (Gumoonso area).

Hydrothermal Alteration and Engineering Characteristics in the Bokan Tunnel Area passing through the Yangsan Fault (양산단층을 통과하는 복안터널구간의 열수변질작용과 공학적 특성)

  • Lee, Chang-Sup;Lee, Hyo-Min
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.13-22
    • /
    • 2009
  • The study area is a tunnelling section passing through the Yangsan Fault zone. Kyungbu express highway and national road 35 are located above the tunnel. Previous study showed that fault gouge and fault breccia were widely distributed in the tunnelling section with a maximum width of 100 m. From the present study, it is found that sedimentary rocks consisting mainly of shale are distributed at the eastern block of the Yangsan Fault and these rocks are not subject to mechanical fracturing and hydrothermal alteration. On the other hand, dacitic tuff distributed at the western block of the Yangsan Fault is largely affected by mechanical fracturing and hydrothermal alteration. The large fault zone of $50{\sim}130m$ width was formed by complex processes of mechanical fracturing and hydrothermal alterations such as chloritization, sericitization, and kaolinization. Based on the characteristics of mechanical fracturing and hydrothermal alterations, the Yangsan fault zone in the study area is geotechnically classified as four zones: unaltered zone, altered zone, altered fractured zone, and fault gouge zone. These zones show different degrees and aspects in mechanical fracturing and hydrothermal alterations, resulting in different engineering properties.