• Title/Summary/Keyword: 격자 해상도

Search Result 281, Processing Time 0.027 seconds

Obstacle Avoidance of Unmanned Surface Vehicle based on 3D Lidar for VFH Algorithm (무인수상정의 장애물 회피를 위한 3차원 라이다 기반 VFH 알고리즘 연구)

  • Weon, Ihn-Sik;Lee, Soon-Geul;Ryu, Jae-Kwan
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.945-953
    • /
    • 2018
  • In this paper, we use 3-D LIDAR for obstacle detection and avoidance maneuver for autonomous unmanned operation. It is aimed to avoid obstacle avoidance in unmanned water under marine condition using only single sensor. 3D lidar uses Quanergy's M8 sensor to collect surrounding obstacle data and includes layer information and intensity information in obstacle information. The collected data is converted into a three-dimensional Cartesian coordinate system, which is then mapped to a two-dimensional coordinate system. The data including the obstacle information converted into the two-dimensional coordinate system includes noise data on the water surface. So, basically, the noise data generated regularly is defined by defining a hypothetical region of interest based on the assumption of unmanned water. The noise data generated thereafter are set to a threshold value in the histogram data calculated by the Vector Field Histogram, And the noise data is removed in proportion to the amount of noise. Using the removed data, the relative object was searched according to the unmanned averaging motion, and the density map of the data was made while keeping one cell on the virtual grid map. A polar histogram was generated for the generated obstacle map, and the avoidance direction was selected using the boundary value.

Numerical and experimental analysis of aerodynamics and aeroacoustics of high-speed train using compressible Large Eddy Simulation (압축성 대와류모사를 이용한 고속열차의 공력 및 공력소음의 수치적/실험적 분석)

  • Kwongi Lee;Cheolung Cheong;Jaehwan Kim;Minseung Jung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.95-102
    • /
    • 2024
  • Due to technological advances, the cruising speed of high-speed trains is increasing, and aerodynamic noise generated from the flow outside the train has been an important consideration in the design stage. To accurately predict the flow-induced noise, high-resolution generation of sound sources in the near field and low-dissipation of sound propagation in the far field are required. This should be accompanied by a numerical grid and time resolution that can properly consider both temporal and spatial scales for each component of the real high-speed train. To overcome these challenges, this research simultaneously calculates the external flow and acoustic fields of five high-speed train cars of real-scale and at operational running speeds using a threedimensional unsteady Large Eddy Simulation technique. To verify the numerical analysis, the measurements of the wall pressure fluctuation and numerical results are compared. The Ffowcs Williams and Hawking equation is used to predict the acoustic power radiated from the high-speed train. This research is expected to contribute to noise reduction based on the analysis of the aerodynamic noise generation mechanism of high-speed trains.

Calculation of Soil Moisture and Evaporation on the Korean Peninsula using NASA LIS(Land Information System) (NASA LIS(Land Information System)을 이용한 한반도의 토양수분·증발산량 산출)

  • PARK, Gwang-Ha;YU, Wan-Sik;HWANG, Eui-Ho;JUNG, Kwan-Sue
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.83-100
    • /
    • 2020
  • This study evaluated the accuracy of soil moisture and evapotranspiration by calculating the hydrological parameters in Korean peninsula using Land Information System(LIS) developed by US NASA. We used Noah-MP surface model to calculate hydrological parameters, and used MERRA2(Modern-Era Retrospective analysis for Research and Applications, Version 2) for hydrological forcing data. And, International Geosphere-Biosphere Program(IGBP) and University of Maryland(UMD) land cover maps were applied to compare the output accuracy, and Automated Synoptic Observing System(ASOS) of KMA was used as ground observation data. In order to evaluate the accuracy of the output data, the correlation coefficient(CC), BIAS, and efficiency factor (NSE, Nash-Sutcliffe Efficiency) were analyzed with soil moisture and evapotranspiration by ASOS ground observation data. As a result, the correlation coefficient of soil moisture using IGBP was 0.56 on average, and evapotranspiration was about 0.71. On the other hand, soil moisture using UMD was 0.68 on average and evapotranspiration was about 0.72, and the correlation coefficient by UMD was evaluated as high accuracy compared to the results by using IGBP. The correlation coefficient of soil moisture was an average of 0.68 and evapotranspiration was an average of 0.72 when MERRA2 was used as hydrological forcing data. On the other hand, the soil moisture applied with ASOS was an average of 0.66, and evapotranspiration was an average of 0.72. It is judged that the ASOS point data was reanalyzed as 0.65°× 0.5°grids, which is the same spatial resolution with MERRA2, resulting in differences in accuracy depending on the region.

Minimizing Estimation Errors of a Wind Velocity Forecasting Technique That Functions as an Early Warning System in the Agricultural Sector (농업기상재해 조기경보시스템의 풍속 예측 기법 개선 연구)

  • Kim, Soo-ock;Park, Joo-Hyeon;Hwang, Kyu-Hong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.2
    • /
    • pp.63-77
    • /
    • 2022
  • Our aim was to reduce estimation errors of a wind velocity model used as an early warning system for weather risk management in the agricultural sector. The Rural Development Administration (RDA) agricultural weather observation network's wind velocity data and its corresponding estimated data from January to December 2020 were used to calculate linear regression equations (Y = aX + b). In each linear regression, the wind estimation error at 87 points and eight time slots per day (00:00, 03:00, 06:00, 09.00, 12.00, 15.00, 18.00, and 21:00) is the dependent variable (Y), while the estimated wind velocity is the independent variable (X). When the correlation coefficient exceeded 0.5, the regression equation was used as the wind velocity correction equation. In contrast, when the correlation coefficient was less than 0.5, the mean error (ME) at the corresponding points and time slots was substituted as the correction value instead of the regression equation. To enable the use of wind velocity model at a national scale, a distribution map with a grid resolution of 250 m was created. This objective was achieved b y performing a spatial interpolation with an inverse distance weighted (IDW) technique using the regression coefficients (a and b), the correlation coefficient (R), and the ME values for the 87 points and eight time slots. Interpolated grid values for 13 weather observation points in rural areas were then extracted. The wind velocity estimation errors for 13 points from January to December 2019 were corrected and compared with the system's values. After correction, the mean ME of the wind velocities reduced from 0.68 m/s to 0.45 m/s, while the mean RMSE reduced from 1.30 m/s to 1.05 m/s. In conclusion, the system's wind velocities were overestimated across all time slots; however, after the correction model was applied, the overestimation reduced in all time slots, except for 15:00. The ME and RMSE improved b y 33% and 19.2%, respectively. In our system, the warning for wind damage risk to crops is driven by the daily maximum wind speed derived from the daily mean wind speed obtained eight times per day. This approach is expected to reduce false alarms within the context of strong wind risk, by reducing the overestimation of wind velocities.

Evaluation of Contralateral Breast Surface Dose in FIF (Field In Field) Tangential Irradiation Technique for Patients Undergone Breast Conservative Surgery (보존적 유방절제 환자의 방사선치료 시 종속조사면 병합방법에 따른 반대편 유방의 표면선량평가)

  • Park, Byung-Moon;Bang, Dong-Wan;Bae, Yong-Ki;Lee, Jeong-Woo;Kim, You-Hyun
    • Journal of radiological science and technology
    • /
    • v.31 no.4
    • /
    • pp.401-406
    • /
    • 2008
  • The aim of this study is to evaluate contra-lateral breast (CLB) surface dose in Field-in-Field (FIF) technique for breast conserving surgery patients. For evaluation of surface dose in FIF technique, we have compared with other techniques, which were open fields (Open), metal wedge (MW), and enhanced dynamic wedge (EDW) techniques under same geometrical condition and prescribed dose. The three dimensional treatment planning system was used for dose optimization. For the verification of dose calculation, measurements using MOSFET detectors with Anderson Rando phantom were performed. The measured points for four different techniques were at the depth of 0cm (epidermis) and 0.5cm bolus (dermis), and spacing toward 2cm, 4cm, 6cm, 8cm, 10cm apart from the edge of tangential medial beam. The dose calculations were done in 0.25cm grid resolution by modified Batho method for inhomogeneity correction. In the planning results, the surface doses were differentiated in the range of $19.6{\sim}36.9%$, $33.2{\sim}138.2%$ for MW, $1.0{\sim}7.9%$, $1.6{\sim}37.4%$ for EDW, and for FIF at the depth of epidermis and dermis as compared to Open respectively. In the measurements, the surface doses were differentiated in the range of $11.1{\sim}71%$, $22.9{\sim}161%$ for MW, $4.1{\sim}15.5%$, $8.2{\sim}37.9%$ for EDW, and 4.9% for FIF at the depth of epidermis and dermis as compared to Open respectively. The surface doses were considered as underestimating in the planning calculation as compared to the measurement with MOSFET detectors. Was concluded as the lowest one among the techniques, even if it was compared with Open method. Our conclusion could be stated that the FIF technique could make the optimum dose distribution in Breast target, while effectively reduce the probability of secondary carcinogenesis due to undesirable scattered radiation to contra-lateral breast.

  • PDF

High-Resolution Numerical Simulations with WRF/Noah-MP in Cheongmicheon Farmland in Korea During the 2014 Special Observation Period (2014년 특별관측 기간 동안 청미천 농경지에서의 WRF/Noah-MP 고해상도 수치모의)

  • Song, Jiae;Lee, Seung-Jae;Kang, Minseok;Moon, Minkyu;Lee, Jung-Hoon;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.4
    • /
    • pp.384-398
    • /
    • 2015
  • In this paper, the high-resolution Weather Research and Forecasting/Noah-MultiParameterization (WRF/Noah-MP) modeling system is configured for the Cheongmicheon Farmland site in Korea (CFK), and its performance in land and atmospheric simulation is evaluated using the observed data at CFK during the 2014 special observation period (21 August-10 September). In order to explore the usefulness of turning on Noah-MP dynamic vegetation in midterm simulations of surface and atmospheric variables, two numerical experiments are conducted without dynamic vegetation and with dynamic vegetation (referred to as CTL and DVG experiments, respectively). The main results are as following. 1) CTL showed a tendency of overestimating daytime net shortwave radiation, thereby surface heat fluxes and Bowen ratio. The CTL experiment showed reasonable magnitudes and timing of air temperature at 2 m and 10 m; especially the small error in simulating minimum air temperature showed high potential for predicting frost and leaf wetness duration. The CTL experiment overestimated 10-m wind and precipitation, but the beginning and ending time of precipitation were well captured. 2) When the dynamic vegetation was turned on, the WRF/Noah-MP system showed more realistic values of leaf area index (LAI), net shortwave radiation, surface heat fluxes, Bowen ratio, air temperature, wind and precipitation. The DVG experiment, where LAI is a prognostic variable, produced larger LAI than CTL, and the larger LAI showed better agreement with the observed. The simulated Bowen ratio got closer to the observed ratio, indicating reasonable surface energy partition. The DVG experiment showed patterns similar to CTL, with differences for maximum air temperature. Both experiments showed faster rising of 10-m air temperature during the morning growth hours, presumably due to the rapid growth of daytime mixed layers in the Yonsei University (YSU) boundary layer scheme. The DVG experiment decreased errors in simulating 10-m wind and precipitation. 3) As horizontal resolution increases, the models did not show practical improvement in simulation performance for surface fluxes, air temperature, wind and precipitation, and required three-dimensional observation for more agricultural land spots as well as consistency in model topography and land cover data.

A Quantification Method for the Cold Pool Effect on Nocturnal Temperature in a Closed Catchment (폐쇄집수역의 냉기호 모의를 통한 일 최저기온 분포 추정)

  • Kim, Soo-Ock;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.4
    • /
    • pp.176-184
    • /
    • 2011
  • Cold air on sloping surfaces flows down to the valley bottom in mountainous terrain at calm and clear nights. Based on the assumption that the cold air flow may be the same as the water flow, current models estimate temperature drop by regarding the cold air accumulation at a given location as the water-like free drainage. At a closed catchment whose outlet is blocked by man-made obstacles such as banks and roads, however, the water-like free drainage assumption is no longer valid because the cold air accumulates from the bottom first. We developed an empirical model to estimate quantitatively the effect of cold pool on nocturnal temperature in a closed catchment. In our model, a closed catchment is treated like a "vessel", and a digital elevation model (DEM) was used to calculate the maximum capacity of the cold pool formed in a closed catchment. We introduce a topographical variable named "shape factor", which is the ratio of the cold air accumulation potential across the whole catchment area to the maximum capacity of the cold pool to describe the relative size of temperature drop at a wider range of catchment shapes. The shape factor is then used to simulate the density profile of cold pool formed in a given catchment based on a hypsometric equation. The cold lake module was incorporated with the existing model (i.e., Chung et al., 2006), generating a new model and predicting distribution of minimum temperature over closed catchments. We applied this model to Akyang valley (i.e., a typical closed catchment of 53 $km^2$ area) in the southern skirt of Mt. Jiri National Park where 12 automated weather stations (AWS) are operational. The performance of the model was evaluated based on the feasibility of delineating the temperature pattern accurately at cold pool forming at night. Overall, the model's ability of simulating the spatial pattern of lower temperature were improved especially at the valley bottom, showing a similar pattern of the estimated temperature with that of thermal images obtained across the valley at dawn (0520 to 0600 local standard time) of 17 May 2011. Error in temperature estimation, calculated with the root mean square error using the 10 low-lying AWSs, was substantially decreased from $1.30^{\circ}C$ with the existing model to $0.71^{\circ}C$ with the new model. These results suggest the feasibility of the new method in predicting the site-specific freeze and frost warning at a closed catchment.

Geographical Migration of Winter Barley in the Korean Peninsula under the RCP8.5 Projected Climate Condition (신 기후변화시나리오에 따른 한반도 내 겨울보리 재배적지 이동)

  • Kim, Dae-Jun;Kim, Jin-Hee;Roh, Jae-Hwan;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.4
    • /
    • pp.161-169
    • /
    • 2012
  • The RCP 8.5 scenario based temperature outlook (12.5 km resolution) was combined with high-definition gridded temperature maps (30 m grid spacing) across the Korean Peninsula in order to reclassify the cold hardiness zone for winter barley, a promising grain crop in the future under warmer winter conditions. Reference maps for the January minimum and mean temperature were prepared by applying the watershed-specific geospatial climate prediction schemes to the synoptic observations from 1981 to 2010 across North and South Korea. Decadal changes in the January minimum and mean temperatures projected by a regional version of RCP8.5 climate change scenario were prepared for the 2011-2100 period at 12.5 km grid spacing and were subsequently added to the reference maps, producing the 30 m resolution temperature surfaces for 9 decades from 2011 to 2100. A criterion for threshold temperature to grow winter barley safely in Korea was applied to the future temperature surfaces and the resulting maps were used to predict the production potential of 3 cultivar groups for the 9 future decades under the projected temperature conditions. By 2020s, hulled barley cultivars could be grown safely at the southern part of North Korea as well as the mountainous Gangwon province. Furthermore, most of South Korean rice paddies will be safe for growing naked barley after harvesting rice. Also, dual cropping systems such as 'winter-barley after rice' could be possible at most of the North Korean rice paddies by 2040s. Additional grain production in North Korea could increase up to 4 million tons per year if dual cropping systems can be fully operated, i.e., winter barley after rice at all lowlands and winter barley after maize or potato at all uplands.

Downscaling of Sunshine Duration for a Complex Terrain Based on the Shaded Relief Image and the Sky Condition (하늘상태와 음영기복도에 근거한 복잡지형의 일조시간 분포 상세화)

  • Kim, Seung-Ho;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.233-241
    • /
    • 2016
  • Experiments were carried out to quantify the topographic effects on attenuation of sunshine in complex terrain and the results are expected to help convert the coarse resolution sunshine duration information provided by the Korea Meteorological Administration (KMA) into a detailed map reflecting the terrain characteristics of mountainous watershed. Hourly shaded relief images for one year, each pixel consisting of 0 to 255 brightness value, were constructed by applying techniques of shadow modeling and skyline analysis to the 3m resolution digital elevation model for an experimental watershed on the southern slope of Mt. Jiri in Korea. By using a bimetal sunshine recorder, sunshine duration was measured at three points with different terrain conditions in the watershed from May 15, 2015 to May 14, 2016. The brightness values of the 3 corresponding pixel points on the shaded relief map were extracted and regressed to the measured sunshine duration, resulting in a brightness-sunshine duration response curve for a clear day. We devised a method to calibrate this curve equation according to sky condition categorized by cloud amount and used it to derive an empirical model for estimating sunshine duration over a complex terrain. When the performance of this model was compared with a conventional scheme for estimating sunshine duration over a horizontal plane, the estimation bias was improved remarkably and the root mean square error for daily sunshine hour was 1.7hr, which is a reduction by 37% from the conventional method. In order to apply this model to a given area, the clear-sky sunshine duration of each pixel should be produced on hourly intervals first, by driving the curve equation with the hourly shaded relief image of the area. Next, the cloud effect is corrected by 3-hourly 'sky condition' of the KMA digital forecast products. Finally, daily sunshine hour can be obtained by accumulating the hourly sunshine duration. A detailed sunshine duration distribution of 3m horizontal resolution was obtained by applying this procedure to the experimental watershed.

Estimation of Fractional Urban Tree Canopy Cover through Machine Learning Using Optical Satellite Images (기계학습을 이용한 광학 위성 영상 기반의 도시 내 수목 피복률 추정)

  • Sejeong Bae ;Bokyung Son ;Taejun Sung ;Yeonsu Lee ;Jungho Im ;Yoojin Kang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.1009-1029
    • /
    • 2023
  • Urban trees play a vital role in urban ecosystems,significantly reducing impervious surfaces and impacting carbon cycling within the city. Although previous research has demonstrated the efficacy of employing artificial intelligence in conjunction with airborne light detection and ranging (LiDAR) data to generate urban tree information, the availability and cost constraints associated with LiDAR data pose limitations. Consequently, this study employed freely accessible, high-resolution multispectral satellite imagery (i.e., Sentinel-2 data) to estimate fractional tree canopy cover (FTC) within the urban confines of Suwon, South Korea, employing machine learning techniques. This study leveraged a median composite image derived from a time series of Sentinel-2 images. In order to account for the diverse land cover found in urban areas, the model incorporated three types of input variables: average (mean) and standard deviation (std) values within a 30-meter grid from 10 m resolution of optical indices from Sentinel-2, and fractional coverage for distinct land cover classes within 30 m grids from the existing level 3 land cover map. Four schemes with different combinations of input variables were compared. Notably, when all three factors (i.e., mean, std, and fractional cover) were used to consider the variation of landcover in urban areas(Scheme 4, S4), the machine learning model exhibited improved performance compared to using only the mean of optical indices (Scheme 1). Of the various models proposed, the random forest (RF) model with S4 demonstrated the most remarkable performance, achieving R2 of 0.8196, and mean absolute error (MAE) of 0.0749, and a root mean squared error (RMSE) of 0.1022. The std variable exhibited the highest impact on model outputs within the heterogeneous land covers based on the variable importance analysis. This trained RF model with S4 was then applied to the entire Suwon region, consistently delivering robust results with an R2 of 0.8702, MAE of 0.0873, and RMSE of 0.1335. The FTC estimation method developed in this study is expected to offer advantages for application in various regions, providing fundamental data for a better understanding of carbon dynamics in urban ecosystems in the future.