• Title/Summary/Keyword: 격자 유화

Search Result 4, Processing Time 0.022 seconds

A New Smoothing Method of Unstructured Viscous Grid for ALM Method (ALM 방법에 의한 비정렬 점성 격자의 유화 기법)

  • Lee, Bong-Ju;Kim, Byoung-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.618-621
    • /
    • 2008
  • In this paper a new smoothing method of unstructured viscous grid which can be useful when the ALM(Advacning Layer Method) method is used to generate volume grids of prism cells starting with unstructured triangular surface grids. According to the new method two layers of prism cells in the advancing direction which are found by the vector smoothing method are first generated, and then the position of nodes along the middle layer are adjusted by using spring analogy. It is found that the proposed method improves grid quality of the unstructured viscous volume grids for body shape with convex and concave corners.

  • PDF

The Effect of Non Magnetic ion Substitution for the FeCr2-xMxS4(M=Ga, In) by Mossbauer Spectroscopy (비자성 이온 Ga, In이 치환된 유화물 스피넬의 뫼스바우어 분광학 연구)

  • Son, Bae-Soon;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.6-10
    • /
    • 2006
  • The sulphur spinel $FeCr_{2-x}M_xS_4$(M=Ga, In) have been studied with Mossbauer spectroscopy, x-ray diffraction (XRD), and vibrating sample magnetometer. The XRB patterns for samples $FeCr_{2-x}M_xS_4$(M=Ga, In: x=0.1, 0.3) reveal a single phase, which the Ga and In ions are partially occupied to the tetrahedral (A) site. The Neel temperature for the Ga substituted samples increases from 180 to 188 K, with increase from x=0.1 to 0.3. While, it decreases from 173 to 160 K, for the In substituted samples of the x=0.1 and 0.3, respectively. The Mossbauer spectra were collected from 4.2 K to room temperature. We have analyzed the Mossbauer spectra using eight Lorentzian lines fitting method for the $FeCr_{2-x}In_xS_4$(x=0.1) at 4.2 K, yielding the 1311owing results; $H_{hf}=146.0kOe,\;{\Delta}E_Q=1.88mm/s,\;\theta=36^{\circ},\;\phi=0^{\circ},\;\eta=0.6$, and R=1.9. The Ga ions enter into the both sites octahedral (B) and tetrahedral (A), simultaneously the same amounts of Fe ions migrate from the A to the B site, this result is an agreement with XRD results, too. The ${\Delta}E_Q$ of the A and B site in Mossbauer spectra of the samples $FeCr_{2-x}Ga_xS_4$(x=0.3) are 0.83 and 2.94mm/s, respectively. While they are 0.56 and 2.36mm/s for the $FeCr_{2-x}In_xS_4$(x=0.3). It is noticeable that the ${\Delta}E_Q$ for the Ga doped samples are larger than that of the corresponding In doped samples, in spite of the larger ionic radius for In ions. The bond lengths of Cr-S, for the Ga and In doped samples (x=0.3) are found to be 2.41 and $2.43\;{\AA}$, respectively. We interpret that the larger covalence effect from the smaller bond length induces a large asymmetric charge distribution. Finally, it gives a large quadrupole interaction.

The Additional Effects of Various Materials on Microwave Heating Property of Frozen Dough (품질개량제 첨가가 냉동반죽의 Microwave 가열특성에 미치는 영향)

  • Kim, Eun-Mi;Han, Hye-Kyung;Kim, In-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.873-881
    • /
    • 2005
  • This study was conducted to improve the properties of frozen dough foods (buns and noodles etc.) on the quality deterioration with microwave oven cooking. Microwave is a useful cooking method, but it quickly takes moisture from food surface and makes lowering food quality abruptly. For improvement of these problems, mixing doughs with addition of various additives of 34 types manufactured respectively; starches, modified starches, gums and emulsifiers etc. Each mixing dough produced in sheet type $(30{\times}30{\times}1mm)$ and steamed them, was quickly froze at $-70^{\circ}C$ and packed with polyethylene. Packed samples kept at $-20^{\circ}C$ for 48 hours. After they were steam or microwave treatment packed or non-packed with polyethylene, studied for improvement effects of quality as sensory evaluation and selected 6 type additives; modified starches (TA, ST), gums (AR, GA) and emulsifiers (E, S1) as improvement agent. Because moisture loss from microwave oven cooking leads to quality deterioration of frozen dough foods, additive, such as including starches, modified starch, gums, and emusifiers were added to improve dough properties. Amylogram, scanning electron microscopy, textural analysis, and differential scanning calorimetry revealed addition of additives improved textural properties including surface-hardening of frozen dough foods compared to the control.