• Title/Summary/Keyword: 겔 전기영동

Search Result 77, Processing Time 0.019 seconds

Influence of Mercury on the Repair of Ionizing Radiation-induced DNA Damage in Coelomocytes of Eisenia fetida (이온화 방사선에 의해 손상된 Eisenia fetida 체강세포의 DNA 수복에 수은이 미치는 영향)

  • Ryu, Tae-Ho;Nili, Mohammad;An, Kwang-Guk;Kim, Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.3
    • /
    • pp.236-240
    • /
    • 2011
  • Mercury known as quicksilver, is the most common cause of heavy metal toxicity. Toxicity caused by excessive mercury exposure is now being recognized as a widespread environmental problem and is continuing to attract a great deal of public concerns. The mercury genotoxicity could be its effect on DNA repair mechanisms, which constitute the defense system designated to protect genome integrity. The objective of this study is to confirm that mercuric chloride inhibits the repair of gamma ray-induced DNA damage. The earthworm of Eisenia fetida was chosen for this study because it is an internationally accepted model species for toxicity testing with a cosmopolitan distribution. Experiments were done to identify the levels of DNA damage and the repair kinetics in the coelomocytes of E. fetida irradiated with 20 Gy gamma rays alone or with gamma rays after 40 mg $kg^{-1}$ $HgCl_2$ treatment by means of the single cell gel electrophoresis assay. The Olive tail moments were measured during 0~96 hours after irradiation. The repair time in the animals treated with the combination of $HgCl_2$ and ionizing radiation was nearly five times longer than that in the animals treated with ionizing radiation alone. Also, E. fetida exposed to mercury showed a statistically lower repair efficiency of gamma ray-induced DNA damage. The results suggest that the mercury could even have deleterious effects on the DNA repair system. Influence of mercury on the DNA repair mechanisms has been confirmed by this study.

Evaluation of DNA Damage and Repair Kinetics in the Earthworm (Eisenia fetida) Exposed to Radiation and Mercury (방사선과 수은에 의해 유도된 Eisenia fetida 체강세포의 DNA 손상 및 수복 평가)

  • Ryu, Tae-Ho;Nili, Mohammad;An, Kwang-Guk;Kim, Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.1
    • /
    • pp.68-73
    • /
    • 2011
  • The single cell gel electrophoresis (SCGE) assay is a microelectrophoretic technique for assessments of DNA damage at the level of the individual eukaryotic cell. The SCGE assay, due to its simplicity, sensitivity and need of a few cells, has advantages compared to other genomic damage assays such as sister chromatid exchange, chromosomal aberration and micronucleus test. In this study, investigated were the levels of DNA damage and the repair kinetics in the coelomocytes of Eisenia fetida treated with HgCl2 and ionizing radiation by means of the SCGE assay. For detecting DNA damage and repair in coelomocytes, earthworms (E. fetida) were irradiated with six doses of ${\gamma}$-rays (0, 2.5, 5, 10, 20 and 50 Gy) and in vivo exposed to mercuric chloride at 0, 80 and 160 mg $kg^{-1}$ for 48 hours. Then the Olive tail moments were measured during 0~12 hours after irradiation and 0~72 hours after Hg treatment. The results showed that the more the oxidative stress was induced by mercury and radiation, the longer the repair time was required. Also, the results suggest that the SCGE assay may be used as an important tool for comparison of the sensitivity of different species to oxidative stresses.

Separation of Egg White Using HPLC with Change of Mobile Phase and Temperature (HPLC에서 이동상 변화와 온도에 따른 난백의 분리)

  • Do, Jin-Sun;Song, Shin-Young;Cho, Ki-Jung;Kim, In-Ho
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.829-834
    • /
    • 2011
  • Lysozyme in egg white functions as bacteriolysis agent and ovalbumin plays a role as antigen in immune system. Egg white analysis methods usually include electrophoresis, gel permeation chromatography and reversed-phase HPLC(RP-HPLC). Among them, RP-HPLC was selected for rapid analysis and C18 column(Agilent, USA) was used as HPLC column. Optimum conditions were searched by changing mobile phase and temperature. Capacity factor and resolution were calculated and compared for various elution conditions. In the isocratic elution, mobile phase volume ratio was changed from 30/70/0.1 to 60/40/0.1(Acetonitrile(ACN)/Distilled water(DW)/Trifluoroacetic acid(TFA)). ACN composition was increased by 10% and temperature was set as $20^{\circ}C$. In the gradient elution, ACN/DW ratio was changed from 10/90 to 60/40 during 20 minute and temperature was varied as 20, 30 and $40^{\circ}C$. In the isocratic elution, three peaks were separated at 50/50/0.1. Lysozyme and ovalbumin were confirmed as first and third peak in three peaks respectively. In the gradient elution, four peaks were separated at $30^{\circ}C$. Lysozyme and ovalbumin were confirmed as first peak and third peak in four peaks respectively.

The Detection and Diagnosis Methods of Infectious Viroids caused Plant Diseases (식물체에 감염성 질병을 유발하는 바이로이드 검출 및 진단 방법)

  • Lee, Se Hee;Kim, Yang-Hoon;Ahn, Ji-Young
    • Journal of Life Science
    • /
    • v.26 no.5
    • /
    • pp.620-631
    • /
    • 2016
  • Viroids are about 250-400 base pair of short single strand RNA fragments have been associated with economically important plant diseases. Due to the lack of protein expression capacity associated with replication, it is very difficult to diagnosis viroid diseases in serological methods. For detecting viroid at plants, molecular-based techniques such as agarose gel electrophoresis, polyacrylamide gel electrophoresis (PAGE), DNA-hybridization, blotting analysis and conventional RT-PCR are reliable. Real-time RT-PCR methods that grafted on RT-PCR methods with improved confirmation methods have been also utilized. However, they are still labor-intensive, time-consuming, and require personnel with expertise. Loop-mediated Isothermal Amplification (LAMP) method is a nucleic acid amplification method under the isothermal condition. The LAMP methodology has been reported to be simple, rapid, sensitive and field applicable in detecting a variety of pathogens. The results of LAMP method can be colorized by adding a visible material such as SYBR green I, Evagreen, Calcein, Berberine and Hydroxy naphthol blue (HNB) with simple equipment or naked eyes. The combination of LAMP method and nucleic pathogens, viroids, can be used to realize simple diagnosis platform for the genetic point-of care testing system. The aim at this review is to summary viroid-caused diseases and the simple visible approach for diagnosing viroids using Loop-mediated Isothermal Amplification (LAMP) method.

The Effect of UV Blocking Lens on the Denaturation of Antioxidative Enzymes Induced by UV-A (UV-A로 유발된 항산화효소의 변성에 대한 자외선 차단렌즈의 작용)

  • Park, Chung-Seo;Park, Young-Min;Kim, Dae-Hyun;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.3
    • /
    • pp.97-103
    • /
    • 2007
  • This study was investigated to find the proper UV-A blocking percentage that could protect the denaturation of catalase and superoxide dismutase (SOD), antioxidative enzymes in eye, induced by UV-A. Catalase or SOD were irradiated at 365 nm for 1, 3, 6, 24, 96 hr and the extent of denaturation was evalutated by polyacrylamide gel electrophoresis. Furthermore, it was investigated whether blocking of UV-A by 20, 50, 80 and 99% eyeglass lens could protect the denaturation of catalase and SOD or not. Catalase became to denature when catalase were irradiated by UV-A for more than 3 hours. However, the denaturation of SOD was induced by more than 6 hours irradiation. The denaturation of catalase induced by irradiation for 3 hr could be perfectly protected by 99% UV-A blocking lens. But, when the irradiation time became longer than 3 hr or the blocking percentage of lens were lower than 99%, the denaturation of catalase was not perfectly protected but partially protected. Although 50% UV-A blocking lens had partial protecting effects, lenses having 80 or 99% UV-A blocking effect could perfectly prevent the denaturation of SOD induced by 96 hr irradiation.

  • PDF

The effect of UV blocking lens on the denaturation of RNase A induced by UV-A (UV-A로 유발된 RNase A의 변성에 대한 UV 차단렌즈의 작용)

  • Park, Young Min;Park, Chung Seo;Lee, Heum-Sook;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.1
    • /
    • pp.9-15
    • /
    • 2007
  • The aim of this study was to find the proper UV-A blocking percentage that could protect the denaturation of ribonuclease A (RNase A), one of protein enzymes in eye, induced by UV-A. RNase A was irradiated at 365 nm for 1, 3, 6, 24, 48, 72, 96 hr and the extent of denaturation was monitored by polyacrylamide gel electrophoresis. Furthermore, it was investigated whether blocking of UV-A by 20, 50, 80 and 99% eyeglass lens could protect the denaturation of RNase A or not. The denaturation of RNase A was induced by only 1 hr UV-A irradiation and the extent of denaturation became severe depending on UV-A irradiation time. The mild denaturation of RNase A induced by irradiation for 1 hr could be sufficiently protected by 20% UV-A blocking lens. When RNase A was irradiated for 3 hr, more that 50% blocking of UV-A needed to prevent the denaturation. Even though 99% UV-A blocking lens was used, the denaturation of RNase A induced by 6 hr irradiation could not be prevented perfectly. However, 99% UV-A blocking lens could dramatically decrease the severe denaturation of RNase A induced by irradiation for 96 hr.

  • PDF

Characterization of Anti-Complementary Polysaccharides Isolated from Fruit Wine Using Korean Pears (배를 이용한 과실주로부터 분리한 항보체 활성화 다당의 특성)

  • Choi, Jung-Ho;Shin, Kwang-Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.1
    • /
    • pp.63-69
    • /
    • 2011
  • To characterize the polysaccharides which exist as soluble forms in Korean traditional alcoholic beverages, the polysaccharides were isolated from Korean pear wine and their anti-complementary activities were examined. The main polysaccharide, PW-1 was purified to homogeneity from the crude polysaccharide (PW-0) in pear wine by size exclusion chromatography using Sephadex G-75. Molecular mass of PW-1 was estimated to be 150 kDa and it contained significant proportion of mannose (81.8%) and 5 different minor component sugars such as arabinose (1.2%), galactose (2.7%), glucose (8.5%), galacturonic acid (5.3%) and glucuronic acid (0.5%). These analyses indicated that the main polysaccharide in pear wine was mainly present as a mannan which had originated from the cell walls of fermenting yeasts. On the other hand, PW-1 showed potent anti-complementary activity in a dose-dependent fashion. Identification of C3 activation products by the crossed immunoelectrophoresis using anti-human C3 and anti-complementary activity of PW-1 in $Ca^{++}$-free condition suggested complement activations by PW-1 from Korean pear wine occur via both classical and alternative pathways.

Insecticide Susceptibility of Field-Collected Populations of the Spiraea Aphid, Aphis citricola(van der Goot)(Hemiptera: Aphididae) in Apple Orchards (사과 과수원에서 조팝나무진딧물의 살충제 감수성)

  • ;;Naoki Motoyama
    • Korean journal of applied entomology
    • /
    • v.32 no.3
    • /
    • pp.259-264
    • /
    • 1993
  • The experiment was carried out to investigate Insecticide susceptibility of the spiraea aphid (Aphis citricola) in apple orchards In Korea, using dipping method. Although insecticIde susceptibility vaned with local and seasonal populations, the susceptibility to demeLon S-rnethyl and phosphamidons was different from that Lo the other insecticides. The LCso values were 10 ppm for deltamethrin and chloropyrifos, 103 ~ 629 ppm for demeton S-methy1, acephate, phosphamidon, monocrotophos and vamldothion, 12,200 ppm for EPN, and 1,745 ppm for pirimicarb. 'When Insecticide susceptibility was compared between the S-clone selected from a population on the host plant spiraea and the R-clone selected from a population on the apple tree, the resistance ratio as expressed by RIS ratio of $LC_{50}$ was 78 for phosphamidon and 546 for pirimicarb. Esterase zymogram determined by the agar gel electrophoresIs revealed a significant difference between the clones. The activity of the E2, E5, E6 and E7 of the R-clone was higher than that of the S-clone, It is suggesLed that the Increased esterase activity may be involved in the mechanism of insecticide resistance in the spiraea aphid, although the involvement of other factor(s) may not be ruled out.

  • PDF

Comparative Study on Human Risk by Ionizing Radiation and Pesticide as Biological Information about Environmental Disaster (환경재해에 관한 생물정보로서의 이온화 방사선과 살충제의 인체 위해성 비교 연구)

  • Kim, Jin-Kyu;Hyun, Soung-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.4
    • /
    • pp.385-392
    • /
    • 2001
  • Environmental risk factors such as ionizing radiations, heavy metals, and pesticides can cause environmental disasters when they exist in excess. The increases in use of ionizing radiation and agricultural pesticide are somewhat related to the possibility of the disaster. The risk of radiation and pesticide was evaluated by means of the single cell gel electrophoresis (SCGE) assay on the human blood lymphocytes. The lymphocytes were irradiated with $0{\sim}2.0Gy$ of $^{60}Co$ gamma ray. Another groups of lymphocytes were exposed to various concentrations of parathion. Significantly increased tail moment, which was a marker of DNA strand breaks in SCGE assay, showed a clear dose- or concentration-response relationship. Parathion of a recommended concentration for agricultural use ($1mg {\ell}^{-1}$ ) has a strong cytotoxic effect on lymphocytes, which is equivalent to damage induced by 0.1 Gy of ${\gamma}$-ray. Furthermore, $2mg{\ell}^{-1}$ of parathion can give rise to DNA damage equivalent to that induced by 0.25 Gy at which the radiation-induced damage can start to develop into clinical symptoms. The comparative results of this study can provide an experimental basis and biological information for the prevention of environmental disaster.

  • PDF

Effects of UV-A Blocking Contact Lenses on the Enzymes Denaturation Induced by UV-A Irradiation (UV-A로 유발된 효소 변성에 대한 콘택트렌즈의 차단 효과)

  • Park, Mijung;Lee, Keum Hee;Lee, Eun Kyung;Park, Sang Hee;Kim, So Ra;Lee, Heum Sook
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.4
    • /
    • pp.43-49
    • /
    • 2008
  • Purpose: The current study was conducted to evaluate the compatibility of UV-A blocking contact lens on eye protection with regular contact lens. Methods: The protective activity of regular contact lens (UV-A blocking: 20%) and UV-A blocking contact lens (UV-A blocking: 85%) on the denaturation of RNase A, catalase, and superoxide dismutase (SOD) induced UV-A irradiation were compared by acrylamide gel electrophoresis. The enzyme solutions were irradiated with UV-A for 1, 3, 6, 24 and 96 hours at the wavelength of 365 nm. Covering area with contact lenses were varied as 50%, 70% and 100% according to the calculation of blocking areas of anterior eye that could be covered with RGP lens, soft contact lens, and eye glasses, respectively. Results: Denaturations of RNase, catalase and SOD were exaggerated when they were exposed to UV-A for a longer period. The denaturation was effectively prevented by UV-A blocking contact lens compared to regular contact lens. The capability of UV-A blocking contact lens was considerably reduced when the covering area with contact lens decreased and exposure time to UV-A extended. Conclusion: Therefore, it would be suggested that wearing contact lens for a long time under sunlight is carefully considered since the activity of UV-A blocking contact lens against UV-A irradiation may not be enough to protect enzymes presented in eyes when exposure time to UV-A increased.

  • PDF