n-스텝 시간차 학습은 몬테카를로 방법과 1-스텝 시간차 학습을 결합한 것으로, 적절한 n을 선택할 경우 몬테카를로 방법과 1-스텝 시간차 학습보다 성능이 좋은 알고리즘으로 알려져 있지만 최적의 n을 선택하는 것에 어려움이 있다. n-스텝 시간차 학습에서 n값 선택의 어려움을 해소하기 위해, 본 논문에서는 Q의 과대평가가 초기 학습의 성능을 높일 수 있다는 특징과 Q ≈ Q* 경우, 모든 n-스텝 누적 보상이 비슷한 값을 가진다는 성질을 이용하여 1 ≤ k ≤ n에 대한 모든 k-스텝 누적 보상의 최댓값과 평균으로 구성된 새로운 학습 타겟인 Ω-return을 제안한다. 마지막으로 OpenAI Gym의 Atari 게임 환경에서 n-스텝 시간차 학습과의 성능 비교 평가를 진행하여 본 논문에서 제안하는 알고리즘이 n-스텝 시간차 학습 알고리즘보다 성능이 우수하다는 것을 입증한다.
코로나19 팬데믹으로 촉발된 메타버스 시장은 현재 가파른 성장세를 보여주고 있다. 메타버스 플랫폼은 컨텐츠를 생산, 소비하는 크리에이터와 사용자 그리고 플랫폼에 조성된 청중을 광고 대상으로 하는 광고주를 연결시키고 있다. 이들 플랫폼 참여자간의 상호작용은 새로운 형태의 경제인 크리에이터 경제의 부상을 가져왔다. 본 논문은 크리에이터와 메타버스 플랫폼의 다양한 수익원 중 광고 수익을 중심으로 플랫폼의 특성이 플랫폼과 크리에이터 간의 수익률 배분에 미치는 영향을 연구하였다. 게임 이론 기반 분석 모델을 통해 본 연구는 메타버스 플랫폼이 광고 회피를 감소시킬수록, 광고의 효과성을 높일수록, 그리고 효과적인 컨텐츠 제작 툴을 제공할수록 크리에이터의 수익 배분율을 낮출 수 있음을 보여주었다.
Among Korea's content industries, the game industry is growing in size to the extent that it can be said to be a representative export-benefiting industry. Accordingly, many users are immersed in the game, and furthermore, they are addicted. This study aims to derive factors for social game users to continue to use by identifying the factors of domestic social network game users' attachment to social network games and empirically studying the causal relationship between these factors and the intention to continue to use them through immersion and addiction. To this end, a research model was presented that applies the main variables of the attachment theory of social network game users to games. The research model of this study surveyed general college students at S University in Seoul who tended to use social network games. As a result of the study, first, it was found that perceived stability had a significant effect on immersion and addiction. Second, it was found that perceived avoidance had a significant effect on immersion and did not have a significant effect on addiction. Third, perceived anxiety was found to have a significant effect on immersion, and it was found that it did not significantly affect addiction. Fourth, it was found that immersion did not significantly affect addiction, and it was found that it had a significant effect on continuous use intention. Fifth, addiction was found to have a significant effect on the intention to continue use. Through this, social network game users' attachment to games can provide useful implications for social network game companies to become attached to existing consumers, spreading social network game users, and improving the possibility of continuous use.
OLED 디스플레이는 빠른 응답속도, 전력 효율성 등 여러 장점 때문에 점차 사용이 증가하고 있는 추세이다. 뛰어난 전력 효율성에도 불구하고 메신저, 게임 등의 사용자와의 상호작용 기반의 어플리케이션 사용의 증가로 OLED에 의한 전력 소모 비중이 여전히 크게 나타나고 있다. OLED에서는 출력하는 영상에 따라 소모 전력이 크게 달라지기 때문에 저전력 색 변환 기법이 대표적인 전력 절감 기법이다. 기존의 저전력 색 변환 기법들은 색 변환 시 인간 시각 시스템의 만족에 대한 엄밀한 연구가 없으며, 시각 만족도와 소모 전력을 동시에 최적으로 고려하는 연구가 부재했다. 본 연구에서는 기존 기법들의 문제점을 보완한 새로운 저전력 색변환 기법을 제안한다. 실험 결과를 통해서 제안 기법이 기존 기법보다 시각 만족도 측면에서 더 인간 시각 시스템을 만족하며 또 전력절감 측면에서도 색 변환거리에 따라 기존 기법보다 평균 13.4% 및 22.4% 향상된 전력 절감이 가능한 것으로 나타났다.
이중 연결 네트워크(Dual Connectivity Network)는 소몰 셀 기지국(SBS: Smallcell Base Station)의 제한된 자원 문제와 간섭 문제를 완화하기 위해 스몰 셀 기지국과 매크로 셀 기지국(MBS: Macrocell Base Station)이 협력하여 서비스를 지원하는 기술이다. 하지만 이중 연결 네트워크 역시 한정된 자원을 분배해주는 기술이기 때문에 자원 할당 방식은 매우 중요한 문제이다. 그래서 본 논문에서는 이중 연결 네트워크에서 효율적이고 공정한 자원할당을 위해 일반화된 강한 포부 협상 해법(GTABS: Generalizing Tempered Aspiration Bargaining Solution)과 굽타 리빈 협상 해법(GLBS:Gupta and Livne Bargaining Solution)을 이용한 두 단계 자원 분배 알고리즘을 제안한다. 단계 자원 분배 알고리즘은 다음과 같다. 첫 번째 단계인 그룹 자원 분배 알고리즘에서는 GTABS를 이용하여 각 기지국의 무선 자원을 실시간 그룹과 비 실시간 그룹에게 효율적으로 할당한다. 두 번째 단계인 사용자 자원 분배 알고리즘에서는 GLBS를 이용하여 각 그룹으로 나누어진 자원을 각 그룹의 사용자들에게 최적으로 할당한다. 이러한 두 단계 자원 분배 방식은 5G 무선 자원을 최적으로 할당하여 네트워크 시스템 성능 최대화와 사용자 만족도를 동시에 보장한다. 마지막으로 본 논문에서는 성능 평가를 통해 제안된 방식이 서비스 요청 증가에 따라 전체 시스템 처리량, 공정성, 통신 장애율 측면에서 비교 방식들 보다 모두 10% 이상의 효율성을 입증했다.
본 연구의 목적은 배드민턴 동호회 활동을 조사하고 배드민턴 활동에서 발생하는 스포츠 상해를 예방하는 스마트 의류를 디자인 개발하는 것이다. 고령화 사회에서, 스포츠는 생활체육으로 친숙하게 접하고 있으며, 점차 동호회 형식으로 발달되고 있다. 배드민턴 동호회 활동은 많은 스포츠 상해가 있으며, 특히 높은 발생률을 보이는 발목 부상은 스포츠 참여를 방해하는 심각한 문제로 대두되고 있다. 그러므로 본 연구는 발목 부상을 포함한 스포츠 상해를 예방하는 스마트의류의 디자인 프로토타입을 제안하는 것을 목표로 하였다. 첫째, 배드민턴 동호인들의 특성 및 고려사항, 그리고 스포츠 부상을 예방하기 위한 스마트 의류의 구성요소를 도출하였다. 둘째, 배드민턴 동호인들과 엘리트 배드민턴 선수, 전문가의 대상으로 스마트의류 사용에 따른 문제 및 사용자 평가들을 고찰하였다. 셋째, 선행연구와 사용자 평가 항목들을 통하여 스마트의류의 사용 시나리오를 도출하였다. 넷째, 발목 상해를 포함한 스포츠 상해를 방지하는 스마트의류 프로토타입을 사용 시나리오를 기반으로 제안하였다. 본 연구에서 제안된 스마트의류를 통하여, 스포츠 상해 예방에 도움이 필요한 배드민턴 동호인들은 스마트 단말기를 통해서 그들의 상해와 건강 상태를 가상 게임의 아바타로 모니터링이 가능하다. 이러한 가상 게임 시스템은 스포츠의 상해 및 건강에 관련한 정보에 접근을 용이하게 한다. 따라서 이와 같은 스포츠용 스마트의류는 배드민턴 동호인들의 부상을 예방하고 스스로 재검토를 가능하게 한다. 본 연구는 스포츠 상해를 예방하거나 스포츠 활동 또는 생체 신호 모니터링 하는 스마트의류 디자인 시에도 활용될 수 있다.
현대전에서는 정보전을 기반으로 미사일, 유도무기 등의 사정거리와 정밀도가 향상됨에 따라 지대공미사일(SAM : Surface to Air Missile)의 요격성능의 중요성이 부각되고 있다. 위협적인 공중 공격을 예측 하고 방어하기 위해 최선의 방법으로 지대공 레이더와 유도미사일을 이용한 공중방어시스템 구축이 필요하다. 지대공미사일 개발 과정에서 Modeling and Simulation (M&S)을 이용하는 것은 시간적, 공간적 제한을 극복할 수 있고 시행착오를 줄임으로 비용을 절감할 수 있는 이점이 있다. M&S는 최신 무기체계 설계 및 교육/훈련 분야에 많이 적용되고 있다. 본 연구는 지대공미사일의 요격 성능 평가를 위한 시뮬레이터를 개발하는 것에 목적이 있다. 본 연구에서는 다양한 사양의 지대공미사일 요격 성능을 고려할 수 있는 지대공미사일 요격 성능 분석 시뮬레이터의 아키텍처를 제시하고 개발하였다. 개발된 지대공미사일 요격 성능 분석 시뮬레이터는 C++와 Direct3D를 기반으로 개발되었으며, Direct3D를 이용한 3D 가시화를 통해 사용자에게 애니메이션 창에 시각적으로 시뮬레이션의 진행 경과를 보여줄 수 있도록 개발되었다. 사용자의 교전모델 설계 운영 정보는 입력창을 통해 입력되며, 이 정보는 객체 관리자, 운영 관리자, 통합 관리자로 구성된 시뮬레이션 엔진에서 자동으로 지대공미사일을 모델링 및 시뮬레이션 하여 빠른 시간 안에 시뮬레이터 사용자에게 피드백을 제공한다.
최근 게임, 영화, 애니메이션 다양한 분야에서 모션 캡처를 이용하여 신체 모델을 구축하고 캐릭터를 생성하여 3차원 공간에 표출하는 콘텐츠가 증가하고 있다. 마커를 부착하여 관절의 위치를 측정하는 방법에서 촬영 장비에 대한 비용과 같은 문제를 보완하기 위해 RGB-D 카메라를 이용하여 애니메이션을 생성하는 연구가 진행되고 있지만, 관절 추정 정확도나 장비 비용의 문제가 여전히 존재한다. 이에 본 논문에서는 애니메이션 생성에 필요한 장비 비용을 줄이고 관절 추정 정확도를 높이기 위해 RGB 이미지를 관절 추정 네트워크에 입력하고, 그 결과를 3차원 데이터로 변환하여 FBX 형식 애니메이션으로 생성하는 시스템을 제안한다. 먼저 RGB 이미지에 대한 2차원 관절을 추정하고, 이 값을 이용하여 관절의 3차원 좌표를 추정한다. 그 결과를 쿼터니언으로 변환하여 회전한 후, FBX 형식의 애니메이션을 생성한다. 제안한 방법의 정확도 측정을 위해 신체에 마커를 부착하여 마커의 3차원 위치를 바탕으로 생성한 애니메이션과 제안된 시스템으로 생성한 애니메이션의 오차를 비교하여 시스템 동작을 입증하였다.
소셜 네트워크는 사용자들의 공통된 관심사, 경험, 그리고 일상 생활들을 함께 공유하기 위해 소셜 네트워크 상 사람들을 서로 연결시켜주는 거대한 커뮤니케이션 플랫폼이다. 소셜 네트워크상의 사용자들은 포스팅, 댓글, 인스턴스 메시지, 게임, 소셜 이벤트 외에도 다양한 애플리케이션을 통해 다른 사용자들과 소통하고 개인 정보 관리하는데 많은 시간을 소비한다. 소셜 네트워크 상의 풍부한 사용자 정보는 추천시스템이 추천 성능을 향상시키기 위해 필요한 큰 잠재력이 되었다. 대부분의 사용자들은 어떤 상품을 구매하기 전 가까운 관계이거나 같은 성향을 가진 사람들의 의견을 반영하여 의사 결정을 하게 된다. 그러므로 소셜 네트워크에서의 사용자 관계는 추천시스템을 위한 사용자 선호도 예측을 효율적으로 높이는데 중요한 요소라 할 수 있다. 일부 연구자들은 소셜 네트워크에서의 사용자와 다른 사용자들 사이의 상호작용 즉, 소셜 관계(social relationship)와 같은 소셜 데이터가 추천시스템에서 추천의 질에 어떠한 영향을 미치는가를 연구하고 있다. 추천시스템은 아마존, 이베이, Last.fm과 같은 큰 규모의 전자상거래 사이트 또한 채택하여 사용되는 시스템으로, 추천시스템을 위한 방법으로는 협업적 여과 방법과 내용 기반 여과 방법이 있다. 협업적 여과 방법은 사용자들의 선호도 학습에 의해 사용자가 아직 평가하지 않은 아이템 중 선호할 수 있는 아이템을 정확하게 제안하기 위한 추천시스템 방법 중 하나이다. 협업적 여과는 사용자들의 데이터에 초점을 맞춘 방법으로 유사한 배경과 선호도를 가지는 사용자들로부터 정보를 수집하여 사용자들의 선호도 예측을 자동으로 발생시킨다. 특히 협업적 여과는 근접한 이웃 사용자들에 의해서 목적 사용자가 선호할 수 있는 아이템을 제시하는 것으로 유사한 이웃 사용자를 찾는 것이 중요하다. 좋은 이웃 사용자 발견은 사용자와 아이템을 고려하는 방법이 일반적이다. 각 사용자는 아이템 즉, 영화, 상품, 책 등에 자신의 선호도를 나타내기 위하여 평가 값을 입력하고, 시스템은 이를 바탕으로 사용자-평가 행렬을 구축한다. 이 사용자-평가 행렬은 목적 사용자와 유사하게 아이템을 평가한 사용자 그룹을 찾기 위한 것으로, 목적 사용자가 아직 평가하지 않은 아이템에 대하여 사용자-평가 매트릭스를 통해 그 평가 값을 예측한다. 현재 이 협업적 여과 방법은 전자상거래와 정보 검색에서 적용되어 개인화 시스템에 효율적으로 사용되고 있다. 하지만 초기 사용자 문제, 데이터 희박성 문제와 확장성 그리고 예측 정확도 향상 등 해결해야 할 과제가 여전히 남아 있다. 이러한 문제들을 해소하기 위해 많은 연구자들은 하이브리드, 신뢰기반, 소셜 네트워크 기반 협업적 여과와 같은 다양한 방법을 제안하였다. 본 논문에서는 전통적인 협업적 여과 방식의 예측 정확도와 추천 성능을 향상시키기 위해 소셜 네트워크에 존재하는 소셜 관계를 이용한 협업적 여과 시스템을 제안한다. 소셜 관계는 소셜 네트워크 서비스 중 하나인 페이스북 사용자들이 남긴 포스팅과 사용자의 소셜 네트워크 친구와 의견 교류 중 남긴 코멘트와 같은 사용자 행동을 기반으로 정의된다. 소셜 관계를 구축하기 위해 소셜 네트워크 사용자의 포스팅과 댓글을 추출하고, 추출된 텍스트에 불용어 및 특수 기호 제거와 스테밍 등 전처리를 수행하였다. 특징 벡터는 TF-IDF를 이용하여 전처리된 텍스트에 나타난 각 단어에 대한 특징 점수를 계산함으로써 구축된다. 본 논문에서 이웃 사용자를 결정하기 위해 사용되는 사용자 간 유사도는 특징 벡터를 이용한 사용자 행동 유사도와 사용자의 영화 평가를 기반으로 한 전통적 방법의 유사도를 결합하여 계산된다. 제안하는 시스템은 목표 사용자와 제안한 방법을 통해 결정된 이웃 사용자 집단을 기반으로 목표 사용자가 평가하지 않은 아이템에 대한 선호도를 예측하고 Top-N 아이템을 선별하여 사용자에게 아이템을 추천하게 된다. 본 논문에서 제안하는 방법을 확인하고 평가하기 위하여 IMDB에서 제공하는 영화 정보 기반으로 영화 평가 시스템을 구축하였다. 예측 정확도를 평가하기 위해 MAE 값을 이용하여 제안하는 알고리즘이 얼마나 정확한 추천을 수행하는지에 대한 예측 정확도를 측정하였다. 그리고 정확도, 재현율 및 F1값 등을 활용하여 시스템의 성능을 평가하였으며, 시스템의 추천 품질은 커버리지를 이용하여 평가되었다. 실험 결과로부터 본 논문에서 제안한 시스템이 보다 더 정확하고 좋은 성능으로 사용자에게 아이템을 추천하는 것을 볼 수 있었다. 특히 소셜 네트워크에서 사용자 행동을 기반으로 한 소셜 관계를 이용함으로써 추천 정확도를 6% 향상시킴을 보였다. 또한 벤치마크 알고리즘과의 성능비교 실험을 통해 7% 향상된 추천 성능의 결과를 보여준다. 그러므로 사용자의 행동으로부터 관찰된 소셜 관계를 CF방법과 결합한 제안한 방법이 정확한 추천시스템을 위해 유용하며, 추천시스템의 성능과 품질을 향상시킬 수 있음을 알 수 있다.
본 논문은 급증하는 인터넷 트래픽예측을 위해 빅데이터와 인공지능기술을 이용하였다. 기존에 트래픽 예측에 관해 다양한 연구가 있었지만 최근 스마트폰이나 스트리밍 등 거대한 인터넷 트래픽을 유발하는 증가 요소를 반영하지는 못했다. 더불어 대용량 인기 게임 출시나 OTT(Over the Top)사업자의 신규 컨텐츠 제공과 같은 이벤트성 요소는 사전 예측이 더욱 어렵다. 이러한 특성으로 기존 방법으로는 ISP(Internet Service Provider)가 실시간적 서비스 품질관리나 트래픽 예측치를 네트워크 사업환경에 반영하기가 불가능하였다. 따라서 본 연구에서는 이러한 문제점을 해결하고자 기존 NMS와는 별개로 트래픽 데이터를 실시간적으로 탐색, 판별하여 수집하는 인터넷 트래픽 수집시스템을 구축하였다. 이를 통해 수집대상의 데이터를 자동등록할 수 있는 유연성과 탄력성을 확보하였으며 실시간 네트워크 품질모니터링을 가능하게 하였다. 또한 시스템에서 수집된 대량의 트래픽 데이터를 머신러닝(AI)으로 분석하여 OTT 사업자의 미래 트래픽을 예측하였다. 이를 통해 보다 과학적이고 체계적인 예측이 가능해졌으며 더불어 ISP 사업자 간의 연동 최적화와 대형 OTT 서비스의 품질확보가 가능할 수 있게 되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.