• Title/Summary/Keyword: 게이트 단자전압

Search Result 21, Processing Time 0.021 seconds

Analysis for Potentail Distribution of Asymmetric Double Gate MOSFET Using Series Function (급수함수를 이용한 비대칭 이중게이트 MOSFET의 전위분포 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2621-2626
    • /
    • 2013
  • This paper has presented the potential distribution for asymmetric double gate(DG) MOSFET, and sloved Poisson equation to obtain the analytical solution of potential distribution. The symmetric DGMOSFET where both the front and the back gates are tied together is three terminal device and has the same current controllability for front and back gates. Meanwhile the asymmetric DGMOSFET is four terminal device and can separately determine current controllability for front and back gates. To approximate with experimental values, we have used the Gaussian function as doping distribution in Poisson equation. The potential distribution has been observed for gate bias voltage and gate oxide thickness and channel doping concentration of the asymmetric DGMOSFET. As a results, we know potential distribution is greatly changed for gate bias voltage and gate oxide thickness, especially for gate to increase gate oxide thickness. Also the potential distribution for source is changed greater than one of drain with increasing of channel doping concentration.

Analysis for Potential Distribution of Asymmetric Double Gate MOSFET (비대칭 이중게이트 MOSFET의 전위분포 분석)

  • Jung, Hakkee;Lee, Jongin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.691-694
    • /
    • 2013
  • This paper has presented the potential distribution for asymmetric double gate(DG) MOSFET, and sloved Poisson equation to obtain the analytical solution of potential distribution. The symmetric DGMOSFET where both the front and the back gates are tied together is three terminal device and has the same current controllability for front and back gates. Meanwhile the asymmetric DGMOSFET is four terminal device and can separately determine current controllability for front and back gates. To approximate with experimental values, we have used the Gaussian function as charge distribution in Poisson equation. The potential distribution has been observed for gate bias voltage and gate oxide thickness and channel doping concentration of the asymmetric DGMOSFET. As a results, we know potential distribution is greatly changed for gate bias voltage and gate oxide thickness, especially for gate to increase gate oxide thickness. Also the potential distribution for source is changed greater than one of drain with increasing of channel doping concentration.

  • PDF

Bottom Gate Voltage Dependent Threshold Voltage Roll-off of Asymmetric Double Gate MOSFET (하단게이트 전압에 따른 비대칭 이중게이트 MOSFET의 문턱전압이동 의존성)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1422-1428
    • /
    • 2014
  • This paper has analyzed threshold voltage roll-off for bottom gate voltages of asymmetric double gate(DG) MOSFET. Since the asymmetric DGMOSFET is four terminal device to be able to separately bias for top and bottom gates, the bottom gate voltage influences on threshold voltage. It is, therefore, investigated how the threshold voltage roll-off known as short channel effects is reduced with bottom gate voltage. In the pursuit of this purpose, off-current model is presented in the subthreshold region, and the threshold voltage roll-off is observed for channel length and thickness with a parameter of bottom gate voltage as threshold voltage is defined by top gate voltage that off-currnt is $10^{-7}A/{\mu}m$ per channel width. As a result to observe the threshold voltage roll-off for bottom gate voltage using this model, we know the bottom gate voltage greatly influences on threshold voltage roll-off voltages, especially in the region of short channel length and thickness.

Subthreshold Swing for Top and Bottom Gate Voltage of Asymmetric Double Gate MOSFET (비대칭 DGMOSFET의 상·하단 게이트전압에 대한 문턱전압이하 스윙)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.657-662
    • /
    • 2014
  • This paper has analyzed the subthreshold swings for top and bottom gate voltages of asymmetric double gate(DG) MOSFET. The asymmetric DGMOSFET is four terminal device to be able to separately bias for top and bottom gates. The subthreshold swing, therefore, has to be analyze not only for top gate voltage, but also for bottom gate voltage. In the pursuit of this purpose, Poisson equation has been solved to obtain the analytical solution of potential distribution with Gaussian function, and the subthreshold swing model has been presented. As a result to observe the subthreshold swings for the change of top and bottom gate voltage using this subthreshold swing model, we know the subthreshold swings are greatly changed for gate voltages. Especially we know the conduction path has been changed for top and bottom gate voltage and this is expected to greatly influence on subthreshold swings.

Analysis for Top and Bottom Subthreshold Swing of Asymmetric Double Gate MOSFET (비대칭 이중게이트 MOSFET에 대한 상·하단 문턱전압이하 스윙 분석)

  • Jung, Hakkee;Kwon, Ohsin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.704-707
    • /
    • 2013
  • This paper has analyzed the subthreshold swings for top and bottom gate voltages of asymmetric double gate(DG) MOSFET. The asymmetric DGMOSFET is four terminal device to be able to separately bias for top and bottom gates. The subthreshold swing, therefore, has to be analyze not only for top gate voltage, but also for bottom gate voltage. In the pursuit of this purpose, Poisson equation has been solved to obtain the analytical solution of potential distribution with Gaussian function, and the subthreshold swing model has been presented. As a result to observe the subthreshold swings for the change of top and bottom gate voltage using this subthreshold swing model, we know the subthreshold swings are greatly changed for gate voltages. Especially we know the conduction path has been changed for top and bottom gate voltage and this is expected to greatly influence on subthreshold swings.

  • PDF

Threshold Voltage Roll-off for Bottom Gate Voltage of Asymmetric Double Gate MOSFET (비대칭 이중게이트 MOSFET의 하단게이트 전압에 따른 문턱전압이동현상)

  • Jung, Hakkee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.741-744
    • /
    • 2014
  • This paper has analyzed threshold voltage roll-off for bottom gate voltages of asymmetric double gate(DG) MOSFET. Since the asymmetric DGMOSFET is four terminal device to be able to separately bias for top and bottom gates, the bottom gate voltage influences on threshold voltage. It is, therefore, investigated how the threshold voltage roll-off known as short channel effects is reduced with bottom gate voltage. In the pursuit of this purpose, off-current model is presented in the subthreshold region, and the threshold voltage roll-off is observed for channel length and thickness with a parameter of bottom gate voltage as threshold voltage is defined by top gate voltage that off-currnt is $10^{-7}A/{\mu}m$ per channel width. As a result to observe the threshold voltage roll-off for bottom gate voltage using this model, we know the bottom gate voltage greatly influences on threshold voltage roll-off voltages, especially in the region of short channel length and thickness.

  • PDF

Subthreshold Current Model for Threshold Voltage Shift Analysis in Junctionless Cylindrical Surrounding Gate(CSG) MOSFET (무접합 원통형 게이트 MOSFET에서 문턱전압이동 분석을 위한 문턱전압이하 전류 모델)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.789-794
    • /
    • 2017
  • Subthreshold current model is presented using analytical potential distribution of junctionless cylindrical surrounding-gate (CSG) MOSFET and threshold voltage shift is analyzed by this model. Junctionless CSG MOSFET is significantly outstanding for controllability of gate to carrier flow due to channel surrounded by gate. Poisson's equation is solved using parabolic potential distribution, and subthreshold current model is suggested by center potential distribution derived. Threshold voltage is defined as gate voltage corresponding to subthreshold current of $0.1{\mu}A$, and compared with result of two dimensional simulation. Since results between this model and 2D simulation are good agreement, threshold voltage shift is investigated for channel dimension and doping concentration of junctionless CSG MOSFET. As a result, threshold voltage shift increases for large channel radius and oxide thickness. It is resultingly shown that threshold voltage increases for the large difference of doping concentrations between source/drain and channel.

Analysis for Gate Oxide Dependent Subthreshold Swing of Asymmetric Double Gate MOSFET (비대칭 DGMOSFET의 문턱전압이하 스윙에 대한 게이트 산화막 의존성 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.4
    • /
    • pp.885-890
    • /
    • 2014
  • This paper has presented the change of subthreshold swings for gate oxide thickness of asymmetric double gate(DG) MOSFET, and solved Poisson equation to obtain the analytical solution of potential distribution. The Gaussian function as doping distribution is used to approch experimental results. The symmetric DGMOSFET is three terminal device. Meanwhile the asymmetric DGMOSFET is four terminal device and can separately determine the bias voltage and oxide thickness for top and bottom gates. As a result to observe the subthreshold swings for the change of top and bottom gate oxide thickness, we know the subthreshold swings are greatly changed for gate oxide thickness. Especially we know the subthreshold swings are increasing with the increase of top and bottom gate oxide thickness, and top gate oxide thickness greatly influences subthreshold swings.

LDO regulator with improved regulation characteristics using gate current sensing structure (게이트 전류 감지 구조를 이용한 향상된 레귤레이션 특성의 LDO regulator)

  • Jun-Mo Jung
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.308-312
    • /
    • 2023
  • The gate current sensing structure was proposed to more effectively control the regulation of the output voltage when the LDO regulator occurs in an overshoot or undershoot situation. In a typical existing LDO regulator, the regulation voltage changes when the load current changes. However, the operation speed of the pass transistor can be further improved by supplying/discharging the gate terminal current in the pass transistor using a gate current sensing structure. The input voltage of the LDO regulator using the gate current sensing structure is 3.3 V to 4.5 V, the output voltage is 3 V, and the load current has a maximum value of 250 mA. As a result of the simulation, a voltage change value of about 12 mV was confirmed when the load current changed up to 250 mA.

Analysis for Relation of Oxide Thickness and Subthreshold Swing of Asymmetric Double Gate MOSFET (비대칭 DGMOSFET의 산화막 두께와 문턱전압이하 스윙의 관계 분석)

  • Jung, Hakkee;Cheong, Dongsoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.698-701
    • /
    • 2013
  • This paper has presented the change of subthreshold swings for gate oxide thickness of asymmetric double gate(DG) MOSFET, and solved Poisson equation to obtain the analytical solution of potential distribution. The symmetric DGMOSFET is three terminal device. Meanwhile the asymmetric DGMOSFET is four terminal device and can separately determine the bias voltage and oxide thickness for top and bottom gates. As a result to observe the subthreshold swings for the change of top and bottom gate oxide thickness, we know the subthreshold swings are greatly changed for gate oxide thickness. Especially we know the subthreshold swings are increasing with the increase of top and bottom gate oxide thickness, and top gate oxide thickness greatly influences subthreshold swings.

  • PDF