• Title/Summary/Keyword: 게이지율

Search Result 7, Processing Time 0.023 seconds

The Development of Stretch Sensors for Measuring the Wrist Movements for People Using Fishing Lures (루어낚시 참여자의 손목 움직임 측정을 위한 스트레치 센서 개발)

  • Choi, Yoon-Seung;Park, Jin-hee;Kim, Joo-yong
    • Science of Emotion and Sensibility
    • /
    • v.25 no.3
    • /
    • pp.77-90
    • /
    • 2022
  • This study seeks to develop a stretch sensor for measuring the wrist movements of people using fishing lures. In order to confirm wrist movement, a stretch sensor was attached to the wrist band, and measurements of the dorsiflexion, plantar flexion, and fishing landing motion were measured using a scale to gauge factor, tensile strength, and elongation recovery rate. A conductive sensor using CNT dispersion was developed and applied to the E-band under the same conditions. A total of 15 sensors of the same size and five types of impregnation once, twice, and three times each were used to measure the gauge factor using UTM. The sensor that was impregnated twice had the best gauge rate, and the prototypes were manufactured with three sensors with high gauge rates and tensile strength. The results of the operation test conducted by connecting to the Arduino showed that Sample 1, which had the highest tensile strength and gauge factor, had a stable graph wavelength in three operations. Samples 2 and 3 showed stable wavelengths in the dorsiflexion and the plantar flexion; however, signal noise appeared in the fishing landing motion. This showed stable wavelengths in the two motions, but the wavelengths of the graphs differ depending on the tensile strength and gauge factor in the fishing landing motion. As a result, it was possible to identify the conditions necessary for manufacturing a stretch sensor for measuring wrist movement. This study will contribute to the development of smart wearable products for lure fishing.

Using Ceramic Diaphragm for Thick Film Pressure Sensor (세라믹 다이어프램을 이용한 후막 압력센서)

  • Lee, Seong-Jae;Min, Nam-Ki;Park, Ha-Young
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1360-1362
    • /
    • 2001
  • 본 논문에서는 다이어프램을 세라믹을 사용하여 2차 변환 소자로 금속 스트레인 게이지 대신에 thick film piezoresistor를 이용한 후막 압력센서에 관한 연구이다. 다이어프램의 미소 변형을 후막의 비저항 변화로 검출하는 압저항 효과를 이용하는 방식이다. 종래의 압력센서와 비교하여 크리프 현상이 적고, 안정성이 우수한 특징을 갖고 있다. 또한 저항선이나 박 게이지의 게이지율이 3$\sim$5 인 것이 비하면 후막저항을 사용한 경우, 약 15$\sim$20정도의 높은 게이지율을 얻을 수 있어서 측정범위를 넓게 할 수 있으며, 후막공정의 스크린 프린팅을 통한 자동화는 수율의 향상과 저 가격화를 실현할 수 있다. 또, 후막 저항형 압력센서는 두 개의 저항이 다이어프램의 중앙 부근에 위치하며, 나머지 두 개의 저항은 가장자리에 위치시킴으로써 미소 변형에서도 저항값의 변화를 읽을 수 있도록 하였고, 휘스톤 브리지의 연결 도체부는 Pt를 주성분으로 하는 conductive paste(DHC7085)를 사용하였다. 이렇게 설계.제작된 압력 센서를 지지대에 고정시킨 후 캡슐에 넣고 감도, 선형성, 히스테리시스 그리고 온도특성 등을 고찰하였다.

  • PDF

NiCrFe Thin Film Strain Gages (NiCrFe 박막 스트레인 게이지)

  • Lee, Youn-Suk;Park, Heung-Joon;Pyo, Seong-Yeol;Min, Nam-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1514-1516
    • /
    • 2003
  • NiCrFe 박막을 이용한 정밀급 박막 스트레인 게이지를 개발하였으며, 그 특성을 요약하면 다음과 같다. 스트레인한계: 5 % 이하, 저항: 350 ${\sim}$ 2,000 ${\Omega}$, 게이지 율: 2.1, 정도: 0.1 %, 피로한계 : $10^6$ at ${\pm}1500{\mu}{\varepsilon}$, 사용온도범위: $-75{\sim}150^{\circ}C$, 온도 출력: ${\pm}1{\mu}{\varepsilon}/^{\circ}C$, 게이지율변화 : +0.009%/$^{\circ}C$ 국산화된 박막 스트레인 게이지는 디지털 로드 셀 등에 적용할 수 있으며, 이 분야의 국내 기술력 향상에 이바지 할 것이다.

  • PDF

Fabrication of Metal Thin-Film Type Pressure Sensors (금속박막형 압력센서의 제작)

  • 최성규;김병태;남효덕;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.587-590
    • /
    • 2000
  • This paper presents the characteristics of metal thin-film pressure sensors. The micro pressure sensors consists of a chrom thin-film, patterned on a Wheatstone bridge configuration, sputter-deposited onto thermally oxidized Si wafer an aluminium interconnection layer. The fabricated micro pressure sensors shows a low temperature coefficient of resistance, high-sensitivity, low non-linearity and excellent temperature stability. The sensitivity is 1.16~1.21 mV/V.kgf/$\textrm{cm}^2$ in the temperature range of 25~l0$0^{\circ}C$ and the maximum non-linearity is 0.21 %FS.

  • PDF

Fracture Behavior and Stress Distribution around Slot (슬롯주위 의 應力分布 와 破壞擧動 1)

  • 송삼홍;고성위
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.2
    • /
    • pp.127-132
    • /
    • 1984
  • In this paper, stress concentration factor and distribution of slotted or notched plate which is subjected to uniaxial tensile load are studied. The experimental measurements have shown the following; (1)The stress around slot or notch of slotted or notched plate which is subjected to uniaxial tensile load is state of biaxial stress, which is mainly varied to notch radius and depth. (2)The stress concentration factor around slot or notch is mainly influenced by the .sigma.$_{yy}$ , it is varied with notch radius and depth. (3)For the notched specimen, there is a notch depth where stress concentration factor is maximum. On the other hand, for the slotted specimen, stress concentration factor increases as the notch depth increases. An investigation of the relationship between fracture and stress concentration factor due to the slot or notch will be presented on the later paper, for reference.

Development of Wrist Tunnel Syndrome Prevention Smart Gloves using CNT-based Tensile Fabric Sensor: Focusing on Mouse Use (CNT 기반의 인장 직물 센서를 사용한 손목터널증후군 예방 스마트장갑 개발: 마우스사용을 중심으로)

  • Chun, Se-Hwan;Kim, Sang-Un;Kim, Joo-Yong
    • Science of Emotion and Sensibility
    • /
    • v.24 no.4
    • /
    • pp.117-128
    • /
    • 2021
  • In this work, we study smart gloves that can prevent carpal tunnel syndrome when using a mouse. Because the left and right wrist movements are fine, a tensile fabric sensor with a large gauge factor and low hysteresis was required before the study. A universal testing machine was used to calculate each gauge rate on four different fabrics, and the fabric with the least hysteresis was selected. In addition, three attachment methods were analyzed using Arduino to select a method with a large sensor value change. For prototypes made by attaching to the selected fabric, data patterns were analyzed using Arduino. The first method identifies only one sensor (A sensor), and the second identifies two sensors (A and B sensors). When the wrist is bent to the right, tensile fabric sensors are attached to both the left (A sensor) and right (B sensor) sides of the wrist, the A sensor is strained, increasing the △sensor value, and the B sensor is relaxed, decreasing the △sensor value. However, when the wrist was bent to the left, the pattern was analyzed in the opposite direction. Through this study, we examined smart gloves to prevent carpal tunnel syndrome with an algorithm that turns on the LED when the wrist is bent, and based on the results of this study, we will directly use mice on 10 people to identify problems and solve problems when used.

Fabrication of Strain Sensor Based on Graphene/Polyurethane Nanoweb and Respiration Measurement (그래핀/폴리우레탄 나노웹 기반의 스트레인센서 제작 및 호흡측정)

  • Lee, Hyocheol;Cho, Hyeon-seon;Lee, Eugene;Jang, Eunji;Cho, Gilsoo
    • Science of Emotion and Sensibility
    • /
    • v.22 no.1
    • /
    • pp.15-22
    • /
    • 2019
  • The purpose of this study is to develop a strain sensor based on a nanoweb by applying electrical conductivity to a polyurethane nanoweb through the use of Graphene. For this purpose, 1% Graphene ink was pour-coated on a polyurethane nanoweb and post-treated with PDMS (Polydimethylsiloxane) to complete a wearable strain sensor. The surface characteristics of the specimens were evaluated using a field emission scanning electron microscope (FE-SEM) to check whether the conductive material was well coated on the surface of the specimen. Electrical properties of the specimens were measured by using a multimeter to measure the linear resistance of the specimen and comparing how the line resistance changes when 5% and 10% of the specimens are tensioned, respectively. In order to evaluate the performance of the specimen, the gauge factor was obtained. The evaluation of the clothing was performed by attaching the completed strain sensor to the dummy and measuring the respiration signal according to the tension using MP150 (Biopac system Inc., USA) and Acqknowledge (ver. 4.2, Biopac system Inc., U.S.A.). As a result of the evaluation of the surface characteristics, it was confirmed that all the conductive nanoweb specimen were uniformly coated with the Graphen ink. As a result of measuring the resistance value according to the tensile strength, the specimen G, which was treated with just graphene had the lowest resistance value, the specimen G-H had the highest resistance value, and the change of the line resistance value of the specimen G and the specimen G-H is increased to 5% It is found that it increases steadily. Unlike the resistance value results, specimen G showed a higher gauge rate than specimen G-H. As a result of evaluation of the actual clothes, the strain sensor made using the specimen G-H measured the stable peak value and obtained a signal of good quality. Therefore, we confirmed that the polyurethane nanoweb treated with Graphene ink plays a role as a breathing sensor.