• Title/Summary/Keyword: 검출 모델

Search Result 1,734, Processing Time 0.034 seconds

Accuracy Analysis of Ocean Tide Loading Constituent Detection Using GNSS Positioning (GNSS 측위방법에 따른 해양조석하중 성분 검출 정확도 분석)

  • Yoon, Ha Su;Choi, Yun Soo;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.3
    • /
    • pp.299-308
    • /
    • 2016
  • Various space geodetic techniques have been developed for highly precise and cost-efficient positioning solutions. By correcting the physical phenomena near the earth’s surface, the positioning accuracy can be further improved. In this study, the vertical crustal deformation induced by the ocean tide loading was accurately estimated through GNSS absolute and relative positioning, respectively, and the tidal constituents of the results were then analyzed. In order to validate the processing accuracy, we calculated the amplitude of eight major tidal constituents from the results and compared them to the global ocean tide loading model FES2004. The experimental results showed that absolute positioning and positioning done every hour during the observation time of 2 hours, which yielded an outcome similar to the reference ocean tide loading model, were better approaches for extracting tide constituents than relative positioning. As a future study, a long-term GNSS data processing will be required in order to conduct more comprehensive analysis including an extended tidal component analysis.

Audio Event Detection Based on Attention CRNN (Attention CRNN에 기반한 오디오 이벤트 검출)

  • Kwak, Jin-Yeol;Chung, Yong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.465-472
    • /
    • 2020
  • Recently, various deep neural networks based methods have been proposed for audio event detection. In this study, we improved the performance of audio event detection by adopting an attention approach to a baseline CRNN. We applied context gating at the input of the baseline CRNN and added an attention layer at the output. We improved the performance of the attention based CRNN by using the audio data of strong labels in frame units as well as the data of weak labels in clip levels. In the audio event detection experiments using the audio data from the Task 4 of the DCASE 2018/2019 Challenge, we could obtain maximally a 66% relative increase in the F-score in the proposed attention based CRNN compared with the baseline CRNN.

Data Detection Algorithm Based on GMM in the Acoustic Data Transmission System (음향 데이터 전송 시스템의 강인한 데이터 검출 성능을 위한 Gaussian Mixture Model 기반 연구)

  • Song, Ji-Hyun;Chang, Joon-Hyuk;Kim, Moon-Kee;Kim, Dong-Keon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.136-141
    • /
    • 2011
  • In this paper, we propose an approach to improve the data detection performance of the acoustic data transmission system based on the modulated complex lapped transform (MCLT). We first present an effective analysis of the features and the detection method of data in the acoustic data transmission system. And then feature vectors which are applied to the Gaussian mixture model (GMM) are selected from relevant parameters of the previous system for the efficient data detection. For the purpose of evaluating the performance of the proposed algorithm, Bit error rate (BER) of the received data was measured at different environments (music genres (rock, pop, classic, jazz) and different distances (1m∼5m) from the loudspeaker to the microphone in a office room) and yields better results compared with the conventional scheme of the acoustic data transmission system based on the MCLT.

Skin Pigmentation Detection Using Projection Transformed Block Coefficient (투영 변환 블록 계수를 이용한 피부 색소 침착 검출)

  • Liu, Yang;Lee, Suk-Hwan;Kwon, Seong-Geun;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.9
    • /
    • pp.1044-1056
    • /
    • 2013
  • This paper presents an approach for detecting and measuring human skin pigmentation. In the proposed scheme, we extract a skin area by a GMM-EM clustering based skin color model that is estimated from the statistical analysis of training images and remove tiny noises through the morphology processing. A skin area is decomposed into two components of hemoglobin and melanin by an independent component analysis (ICA) algorithm. Then, we calculate the intensities of hemoglobin and melanin by using the projection transformed block coefficient and determine the existence of skin pigmentation according to the global and local distribution of two intensities. Furthermore, we measure the area and density of the detected skin pigmentation. Experimental results verified that our scheme can both detect the skin pigmentation and measure the quantity of that and also our scheme takes less time because of the location histogram.

Voice Activity Detection Using Modified Power Spectral Deviation Based on Teager Energy (Teager Energy 기반의 수정된 파워 스펙트럼 편차를 이용한 음성 검출)

  • Song, J.H.;Song, Y.R.;Shim, H.M.;Lee, S.M.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.8 no.1
    • /
    • pp.41-46
    • /
    • 2014
  • In this paper, we propose a novel voice activity detection (VAD) algorithm using feature vectors based on TE (teager energy). Specifically, power spectral deviation (PSD), which is used as the feature for the VAD in the IS-127 noise suppression algorithm, is obtained after the input signal is transfomed by Teager energy operator. In addition, the TE-based likelihhod ratio are derived in each frame to modifiy the PSD for further VAD. The performance of our proposed VAD algorithm are evaluated by objective testing (total error rate, receiver operating characteristics, perceptual evaluation of speech quality) under various environments, and it is found that the proposed method yields better results than conventional VAD algorithms in the non-stationary noise environments under 5 dB SNR (total error rate = 2.6% decrease, PESQ score = 0.053 improvement).

  • PDF

Lane Detection Algorithm using Morphology and Color Information (형태학과 색상 정보를 이용한 차선 인식 알고리즘)

  • Bae, Chan-Su;Lee, Jong-Hwa;Cho, Sang-Bock
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.6
    • /
    • pp.15-24
    • /
    • 2011
  • As increase awareness of intelligent vehicle systems, many kinds of lane detection algorithm have been proposed. General boundary extraction method can bring good result in detection of lane on the road. But a shadow on the road, or other boundaries, such as horizontal lines can be detected. The method using morphological operations was used to extract information about Lane. By applying HSV color model for color information of lane, the candidate of the lane can be extracted. In this paper, the lane detection region was set by Hough transformation using the candidate of the lane. By extracting lane markings on the lane detection region, lane detection method can bring good result.

Personal Information Detection and Blurring Cloud Services Based on Machine Learning (머신러닝에 기반을 둔 사진 속 개인정보 검출 및 블러링 클라우드 서비스)

  • Kim, Min-jeong;Lee, Soo-young;Lee, Jiyoung;Ham, Na-youn
    • Annual Conference of KIPS
    • /
    • 2019.05a
    • /
    • pp.152-155
    • /
    • 2019
  • 클라우드가 대중화되어 많은 모바일 유저들이 자동 백업 기능을 사용하면서 민감한 개인정보가 포함된 사진들이 무분별하게 클라우드에 업로드 되고 있다. 개인정보를 포함한 클라우드가 악의적으로 해킹 될 시, 사진에 포함된 지문, 자동차 번호판, 카드 번호 등이 유출됨에 따라 대량의 개인정보가 유출될 가능성이 크다. 이에 따라 적절한 기준에 맞게 사진 속 개인 정보 유출을 막을 수 있는 기술의 필요성이 대두되고 있다. 현재의 클라우드 시스템의 문제를 해결하고자 본 연구는 모바일 기기에서 클라우드 서버로 사진을 백업하는 과정에서 영역 검출과 블러링의 과정을 제안하고 있다. 클라우드 업로드 과정에서 사진 속의 개인 정보를 검출한 뒤 이를 블러링하여 클라우드에 저장함으로써 악의적인 접근이 행해지더라도 개인정보의 유출을 방지할 수 있다. 머신러닝과 computer vision library등을 이용하여 이미지 내에 민감한 정보를 포함하고 있는 영역을 학습된 모델을 통해 검출한 뒤, OpenCV를 이용하여 블러링처리를 진행한다 사진 속에 포함될 수 있는 생체정보인 지문은 손 영역을 검출한 뒤, 해당 영역을 블러링을 하여 업로드하고 카드번호나 자동차 번호판이 포함된 사진은 영역을 블러링한 뒤, 암호화하여 업로드 된다. 후에 필요에 따라 본인인증을 거친 후 일정기간 열람을 허용하지만 사용되지 않을 경우 삭제되도록 한다. 개인정보 유출로 인한 피해가 꾸준히 증가하고 있는 지금, 사진 속의 개인 정보를 보호하는 기술은 안전한 통신과 더불어 클라우드의 사용을 더 편리하게 할 수 있을 것으로 기대된다.

A Deep Learning Approach with Stacking Architecture to Identify Botnet Traffic

  • Kang, Koohong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.123-132
    • /
    • 2021
  • Malicious activities of Botnets are responsible for huge financial losses to Internet Service Providers, companies, governments and even home users. In this paper, we try to confirm the possibility of detecting botnet traffic by applying the deep learning model Convolutional Neural Network (CNN) using the CTU-13 botnet traffic dataset. In particular, we classify three classes, such as the C&C traffic between bots and C&C servers to detect C&C servers, traffic generated by bots other than C&C communication to detect bots, and normal traffic. Performance metrics were presented by accuracy, precision, recall, and F1 score on classifying both known and unknown botnet traffic. Moreover, we propose a stackable botnet detection system that can load modules for each botnet type considering scalability and operability on the real field.

Study on fire smoke identification method based on SVM and K fold cross verification fusion algorithm (SVM과 K 접힘 교차 검증 융합 알고리즘 기반의 화재 연기 식별 방법 연구)

  • Wang Yudong;Sangbong Park;Jeonghwa Heo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.843-847
    • /
    • 2023
  • In this paper, we propose a model for detecting efficient fire identification to prevent fires that can lead to various industrial accidents, farmland and large forest fires, with the widespread use of various chemicals and flammable substances as modern technology advances. This paper presents an algorithm that can detect fire smoke in a high-efficiency and short time using images, and an algorithm based on SVM(Support Vector Machine) and K fold cross-verification technologies. By analyzing images, fire and smoke detection algorithms have relatively superior detection performance compared to existing algorithms, and the analysis of fire and smoke characteristics detected in this paper is analyzed stably and efficiently and is expected to be used in various fields that may be exposed to fire risks in the future.

Design and Implementation of a ML-based Detection System for Malicious Script Hidden Corrupted Digital Files (머신러닝 기반 손상된 디지털 파일 내부 은닉 악성 스크립트 판별 시스템 설계 및 구현)

  • Hyung-Woo Lee;Sangwon Na
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.1-9
    • /
    • 2023
  • Malware files containing concealed malicious scripts have recently been identified within MS Office documents frequently. In response, this paper describes the design and implementation of a system that automatically detects malicious digital files using machine learning techniques. The system is proficient in identifying malicious scripts within MS Office files that exploit the OLE VBA macro functionality, detecting malicious scripts embedded within the CDH/LFH/ECDR internal field values through OOXML structure analysis, and recognizing abnormal CDH/LFH information introduced within the OOXML structure, which is not conventionally referenced. Furthermore, this paper presents a mechanism for utilizing the VirusTotal malicious script detection feature to autonomously determine instances of malicious tampering within MS Office files. This leads to the design and implementation of a machine learning-based integrated software. Experimental results confirm the software's capacity to autonomously assess MS Office file's integrity and provide enhanced detection performance for arbitrary MS Office files when employing the optimal machine learning model.