• Title/Summary/Keyword: 검출 모델

Search Result 1,728, Processing Time 0.026 seconds

On-Road Car Detection System Using VD-GMM 2.0 (차량검출 GMM 2.0을 적용한 도로 위의 차량 검출 시스템 구축)

  • Lee, Okmin;Won, Insu;Lee, Sangmin;Kwon, Jangwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.11
    • /
    • pp.2291-2297
    • /
    • 2015
  • This paper presents a vehicle detection system using the video as a input image what has moving of vehicles.. Input image has constraints. it has to get fixed view and downward view obliquely from top of the road. Road detection is required to use only the road area in the input image. In introduction, we suggest the experiment result and the critical point of motion history image extraction method, SIFT(Scale_Invariant Feature Transform) algorithm and histogram analysis to detect vehicles. To solve these problem, we propose using applied Gaussian Mixture Model(GMM) that is the Vehicle Detection GMM(VDGMM). In addition, we optimize VDGMM to detect vehicles more and named VDGMM 2.0. In result of experiment, each precision, recall and F1 rate is 9%, 53%, 15% for GMM without road detection and 85%, 77%, 80% for VDGMM2.0 with road detection.

Realtime Facial Expression Data Tracking System using Color Information (컬러 정보를 이용한 실시간 표정 데이터 추적 시스템)

  • Lee, Yun-Jung;Kim, Young-Bong
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.7
    • /
    • pp.159-170
    • /
    • 2009
  • It is very important to extract the expression data and capture a face image from a video for online-based 3D face animation. In recently, there are many researches on vision-based approach that captures the expression of an actor in a video and applies them to 3D face model. In this paper, we propose an automatic data extraction system, which extracts and traces a face and expression data from realtime video inputs. The procedures of our system consist of three steps: face detection, face feature extraction, and face tracing. In face detection, we detect skin pixels using YCbCr skin color model and verifies the face area using Haar-based classifier. We use the brightness and color information for extracting the eyes and lips data related facial expression. We extract 10 feature points from eyes and lips area considering FAP defined in MPEG-4. Then, we trace the displacement of the extracted features from continuous frames using color probabilistic distribution model. The experiments showed that our system could trace the expression data to about 8fps.

A Study on Facial Wrinkle Detection using Active Appearance Models (AAM을 이용한 얼굴 주름 검출에 관한 연구)

  • Lee, Sang-Bum;Kim, Tae-Mook
    • Journal of Digital Convergence
    • /
    • v.12 no.7
    • /
    • pp.239-245
    • /
    • 2014
  • In this paper, a weighted value wrinkle detection method is suggested based on the analysis on the entire facial features such as face contour, face size, eyes and ears. Firstly, the main facial elements are detected with AAM method entirely from the input screen images. Such elements are mainly composed of shape-based and appearance methods. These are used for learning the facial model and for matching the face from new screen images based on the learned models. Secondly, the face and background are separated in the screen image. Four points with the biggest possibilities for wrinkling are selected from the face and high wrinkle weighted values are assigned to them. Finally, the wrinkles are detected by applying Canny edge algorithm for the interested points of weighted value. The suggested algorithm adopts various screen images for experiment. The experiments display the excellent results of face and wrinkle detection in the most of the screen images.

Traffic Sign Detection Using The HSI Eigen-color model and Invariant Moments (HSI 고유칼라 모델과 불변 모멘트를 이용한 교통 표지판 검출 방법)

  • Kim, Jong-Bae;Park, Jung-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.1
    • /
    • pp.41-51
    • /
    • 2010
  • In the research for driver assistance systems, traffic sign information to the driver must be a very important information. Therefore, the detection system of traffic signs located on the road should be able to handel real-time. To detect the traffic signs, color and shape of traffic signs is to use the information after images obtained using the CCD camera. In the road environment, however, using color information to detect traffic sings will cause many problems due to changes of weather and environmental factors. In this paper, to solve it, the candidate traffic sign regions are detected from road images obtained in a variety of the illumination changes using the HSI eign-color model. And then, using the invariant moment-based SVM classifier to detect traffic signs are proposed. Experimental results show that, traffic sign detection rate is 91%, and the processing time per frame is 0.38sec. Proposed method is useful for real-time intelligent traffic guidance systems can be applied.

A fixed-point implementation and performance analysis of EGML moving object detection algorithm (EGML 이동 객체 검출 알고리듬의 고정소수점 구현 및 성능 분석)

  • An, Hyo-sik;Kim, Gyeong-hun;Shin, Kyung-wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.9
    • /
    • pp.2153-2160
    • /
    • 2015
  • An analysis of hardware design conditions of moving object detection (MOD) algorithm is described, which is based on effective Gaussian mixture learning (EGML). A simulation model of EGML algorithm is implemented using OpenCV, and the effects of some parameter values on background learning time and MOD sensitivity are analyzed for various images. In addition, optimal design conditions for hardware implementation of EGML-based MOD algorithm are extracted from fixed-point simulations for various bit-widths of parameters. The proposed fixed-point model of the EGML-based MOD uses only half of the bit-width at the expense of the loss of MOD performance within 0.5% when compared with floating-point MOD results.

Object Detection-Based Cloud System: Efficient Disease Monitoring with Database (객체 검출 기반 클라우드 시스템 : 데이터베이스를 통한 효율적인 병해 모니터링)

  • Jongwook Si;Junyoung Kim;Sungyoung Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.4
    • /
    • pp.210-219
    • /
    • 2023
  • The decline in the rural populace and an aging workforce have led to fatalities due to worsening environments and hazards within vinyl greenhouses. Therefore, it is necessary to automate crop cultivation and disease detection system in greenhouses to prevent labor loss. In this paper, an object detection-based model is used to detect diseased crop in greenhouses. In addition, the system proposed configures the environment of the artificial intelligence model in the cloud to ensure stability. The system captures images taken inside the vinyl greenhouse and stores them in a database, and then downloads the images to the cloud to perform inference based on Yolo-v4 for detection, generating JSON files for the results. Analyze this file and send it to the database for storage. From the experimental results, it was confirmed that disease detection through object detection showed high performance in real environments like vinyl greenhouses. It was also verified that efficient monitoring is possible through the database

Voice Activity Detection Method Using Psycho-Acoustic Model Based on Speech Energy Maximization in Noisy Environments (잡음 환경에서 심리음향모델 기반 음성 에너지 최대화를 이용한 음성 검출 방법)

  • Choi, Gab-Keun;Kim, Soon-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.5
    • /
    • pp.447-453
    • /
    • 2009
  • This paper introduces the method for detect voices and exact end point at low SNR by maximizing voice energy. Conventional VAD (Voice Activity Detection) algorithm estimates noise level so it tends to detect the end point inaccurately. Moreover, because it uses relatively long analysis range for reflecting temporal change of noise, computing load too high for application. In this paper, the SEM-VAD (Speech Energy Maximization-Voice Activity Detection) method which uses psycho-acoustical bark scale filter banks to maximize voice energy within frames is introduced. Stable threshold values are obtained at various noise environments (SNR 15 dB, 10 dB, 5 dB, 0 dB). At the test for voice detection in car noisy environment, PHR (Pause Hit Rate) was 100%accurate at every noise environment, and FAR (False Alarm Rate) shows 0% at SNR15 dB and 10 dB, 5.6% at SNR5 dB and 9.5% at SNR0 dB.

The Develonment of an OSPF Protocol Error Detector (OSPF프로토콜 오류 검출기 개발)

  • Hong Changpyo;Kim Tae-Hyong;Lee Hyun-Sung;Cha Won-Soo;Jung Se-Hoon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11a
    • /
    • pp.484-486
    • /
    • 2005
  • 수동 시험은 기존의 프로토콜 검증 방법과는 달리 제품이 실제 운용되는 환경에서 입출력의 관찰만을 가지고 제품의 오류를 검출하는 시험이다. 본 논문은 EFSM(Extended Finite State Machine) 모델을 이용하여 homing 기법을 사용하는 수동시험 기법을 제안하고 이를 검증하기 위하여 제안된 수동 시험 기법을 사용하는 OSPF 프로토콜의 오류 검출기를 개발하였다. 개발된 오류 검출기는 Zebra[6]와 시스코 라우터로 구성된 소규모 네트워크에서 Zebra를 이용해 발생시킨 오류 OSPF 패킷을 잘 검출해내었다.

  • PDF

Drowsiness Detection using Eye-blink Patterns (눈 깜박임 패턴을 이용한 졸음 검출)

  • Choi, Ki-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.2
    • /
    • pp.94-102
    • /
    • 2011
  • In this paper, a novel drowsiness detection algorithm using eye-blink pattern is proposed. The proposed drowsiness detection model using finite automata makes it easy to detect eye-blink, drowsiness and sleep by checking the number of input symbols standing for closed eye state only. Also it increases the accuracy by taking vertical projection histogram after locating the eye region using the feature of horizontal projection histogram, and minimizes the external effects such as eyebrows or black-framed glasses. Experimental results in eye-blinks detection using the JZU eye-blink database show that our approach achieves more than 93% precision and high performance.

Skin Region Extraction Using Multi-Layer Neural Network and Skin-Color Model (다층 신경망과 피부색 모델을 이용한 피부 영역 검출)

  • Park, Sung-Wook;Park, Jong-Wook
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.2
    • /
    • pp.31-38
    • /
    • 2011
  • Skin color is a very important information for an automatic face recognition. In this paper, we proposed a skin region extraction method using the MLP(Multi-Layer Perceptron) and skin color model. We use the adaptive lighting compensation technique for improved performance of skin region extraction. Also, using an preprocessing filter, normally large areas of easily distinct non-skin pixels, are eliminated from further processing. Experimental results show that the proposed method has better performance than the conventional methods, and reduces processing time by 31~49% on average.