• Title/Summary/Keyword: 검출 모델

Search Result 1,728, Processing Time 0.032 seconds

3D Object Detection via Multi-Scale Feature Knowledge Distillation

  • Se-Gwon Cheon;Hyuk-Jin Shin;Seung-Hwan Bae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.10
    • /
    • pp.35-45
    • /
    • 2024
  • In this paper, we propose Multi-Scale Feature Knowledge Distillation for 3D Object Detection (M3KD), which extracting knowledge from the teacher model, and transfer to the student model consider with multi-scale feature map. To achieve this, we minimize L2 loss between feature maps at each pyramid level of the student model with the correspond teacher model so student model can mimic the teacher model backbone information which improves the overall accuracy of the student model. We apply the class logits knowledge distillation used in the image classification task, by allowing student model mimic the classification logits of the teacher model, to guide the student model to improve the detection accuracy. In KITTI (Karlsruhe Institute of Technology and Toyota Technological Institute) dataset, our M3KD (Multi-Scale Feature Knowledge Distillation for 3D Object Detection) student model achieves 30% inference speed improvement compared to the teacher model. Additionally, our method achieved an average improvement of 1.08% in 3D mean Average Precision (mAP) across all classes and difficulty levels compared to the baseline student model. Furthermore, when integrated with the latest knowledge distillation methods such as PKD and SemCKD, our approach achieved an additional 0.42% and 0.52% improvement in 3D mAP, respectively, further enhancing performance.

Vehicle tracking algorithm using the hue transform in HIS color model (HIS 칼라모델에서 색상 변환을 이용한 자동차 추적 알고리즘)

  • Lee, Joo-Shin
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.1
    • /
    • pp.130-139
    • /
    • 2011
  • In this paper, vehicle tracking algorithm using hue transformation in HIS color model is proposed. the proposed algorithm is installed on the road of the two horizontal virtual data sampling lines. The difference images are detected between the frame and the frame, respectively and also detected in the vehicle by using the hue color distribution to determine identity and lane changes. To examine the effectiveness of proposed algorithm, identification and velocity measurement for driving vehicle are evaluated. this evaluated results is shown by hue data of vehicle passing of two virtual data sample lines, and the velocity measurement for driving vehicle is less than 0.4% comparing with existing vehicle speed meter system.

A Study on Face Object Detection System using spatial color model (공간적 컬러 모델을 이용한 얼굴 객체 검출 시스템 연구)

  • Baek, Deok-Soo;Byun, Oh-Sung;Baek, Young-Hyun
    • 전자공학회논문지 IE
    • /
    • v.43 no.2
    • /
    • pp.30-38
    • /
    • 2006
  • This paper is used the color space distribution HMMD model presented in MPEG-7 in order to segment and detect the wanted image parts as a real time without the user's manufacturing in the video object segmentation. Here, it is applied the wavelet morphology to remove a small part that is regarded as a noise in image and a part excepting for the face image. Also, it did the optimal composition by the rough set. In this paper, tile proposed video object detection algorithm is confirmed to be superior as detecting the face object exactly than the conventional algorithm by applying those to the different size images.put the of paper here.

Segmentation of Brain Ventricle Using Geodesic Active Contour Model Based on Region Mean (영역평균 기반의 지오데식 동적 윤곽선 모델에 의한 뇌실 분할)

  • Won Chul-Ho;Kim Dong-Hun;Lee Jung-Hyun;Woo Sang-Hyo;Cho Jin-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.9
    • /
    • pp.1150-1159
    • /
    • 2006
  • This paper proposed a curve progress control function of the area base instead of the existing edge indication function, in order to detect the brain ventricle area by utilizing a geodesic active contour model. The proposed curve progress control function is very effective in detecting the brain ventricle area and this function is based on the average brightness of the brain ventricle area which appears brighter in MRI images. Compared numerically by using various measures, the proposed method in this paper can detect brain ventricle areas better than the existing method. By examining images of normal and diseased brain's images by brain tumor, we compared the several brain ventricle detection algorithms with proposed method visually and verified the effectiveness of the proposed method.

  • PDF

Intelligent Video Surveillance System for Video Analysis, Recognition and Tracking (비디오 영상분석, 인식 및 추적을 위한 지능형 비디오 감시시스템)

  • Kim, Tae-Kyung;Paik, Joon-Ki
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.498-500
    • /
    • 2012
  • 비디오 해석 및 추적기술은 특정한 시스템에서만 적용되는 것이 아니다. 이것은 비디오 내에서 의미 있는 정보를 능동적으로 감시 대상을 정의, 해석, 모델화, 추정 및 추적 할 수 있는 기반 기술을 의미하다. 일반적으로 감시시스템에서 감시 대상은 사람이나 차량이며, 상황에 따라 출입통제 구역으로 설정하기도 한다. 이는 연속된 영상에서 객체의 형태, 모양, 행동 분석, 움직임, 색상정보를 가지고 데이터 정의, 검출, 모델화를 통하여 인식, 식별 그리고 추적한다. 본 논문에서는 비디오 영상분석을 통해 단일카메라기반의 감시시스템과 PTZ 카메라기반 감시시스템 제안한다. 이때 단일 카메라기반의 감시는 배경생성방법을 이용하여 연속된 영상내의 객체를 지속적으로 관리가 가능하도록 설계하였고, PTZ 카메라기반의 감시는 카메라의 이동에 따른 배경안정화 방법과 카메라의 절대좌표를 활용하여 카메라 이동을 제어함과 동시에 오검출 문제를 해결하였다. 실험 및 결과분석으로는 시나리오 환경에서 배경생성방법을 이용한 검출의 정확성과 PTZ카메라 위치 변화에도 강인한 검출 결과를 비교 분석하였다.

Hand Gesture Recognition Using HMM(Hidden Markov Model) (HMM(Hidden Markov Model)을 이용한 핸드 제스처인식)

  • Ha, Jeong-Yo;Lee, Min-Ho;Choi, Hyung-Il
    • Journal of Digital Contents Society
    • /
    • v.10 no.2
    • /
    • pp.291-298
    • /
    • 2009
  • In this paper we proposed a vision based realtime hand gesture recognition method. To extract skin color, we translate RGB color space into YCbCr color space and use CbCr color for the final extraction. To find the center of extracted hand region we apply practical center point extraction algorithm. We use Kalman filter to tracking hand region and use HMM(Hidden Markov Model) algorithm (learning 6 type of hand gesture image) to recognize it. We demonstrated the effectiveness of our algorithm by some experiments.

  • PDF

A Study of Kernel Characteristics of CNN Deep Learning for Effective Fire Detection Based on Video (영상기반의 화재 검출에 효과적인 CNN 심층학습의 커널 특성에 대한 연구)

  • Son, Geum-Young;Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1257-1262
    • /
    • 2018
  • In this paper, a deep learning method is proposed to detect the fire effectively by using video of surveillance camera. Based on AlexNet model, classification performance is compared according to kernel size and stride of convolution layer. Dataset for learning and interfering are classified into two classes such as normal and fire. Normal images include clouds, and foggy images, and fire images include smoke and flames images, respectively. As results of simulations, it is shown that the larger kernel size and smaller stride shows better performance.

Personal Information Detection and De-identification System using Sentence Intent Classification and Named Entity Recognition (문장 의도 분류와 개체명 인식을 활용한 개인정보 검출 및 비식별화 시스템)

  • Seo, Dong-Kuk;Kim, Gun-Woo;Kim, Jae-Young;Lee, Dong-Ho
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.1018-1021
    • /
    • 2020
  • 최근 개인정보가 포함된 비정형 텍스트 문서들이 유출되거나 무분별하게 공개됨으로써 정보의 주체는 물론 기업들까지 피해를 받고 있다. 데이터를 공개 및 활용하기 위해 개인정보 검출 및 비식별화 과정이 필수적이지만 정형 데이터와는 달리 비정형 데이터의 경우 해당 과정을 자동으로 처리하는 데 한계가 있다. 이를 위해 딥러닝 모델들을 사용하여 자동화하려는 연구들이 있었지만 문장 내 단어의 모호성에 대한 고려 없이 단어 개체명 정보에만 의존하여 개인정보를 검출하는 형태로 진행되었다. 따라서 문장 내 단어들 중 식별 대상인 단어들도 비식별화 되어 데이터에 대한 유용성을 저해할 수 있다는 문제점을 남겼다. 본 논문에서는 문장의 의도 정보를 단어의 개체명 학습 과정에 부가적인 정보로 활용하는 개인정보 검출 모델과 개인정보 데이터의 유용성을 고려한 비식별화 기법을 제안한다.

Processing Method of Unbalanced Data for a Fault Detection System Based Motor Gear Sound (모터 동작음 기반 불량 검출 시스템을 위한 불균형 데이터 처리 방안 연구)

  • Lee, Younghwa;Choi, Geonyoung;Park, Gooman
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1305-1307
    • /
    • 2022
  • 자동차 부품의 결함은 시스템 전체의 성능 저하 및 인적 물적 손실이 발생할 수 있으므로 생산라인에서의 불량 검출은 매우 중요하다. 따라서 정확하고 균일한 결과의 불량 검출을 위해 딥러닝 기반의 고장 진단 시스템이 다양하게 연구되고 있다. 하지만 제조현장에서는 정상 샘플보다 비정상 샘플의 발생 빈도가 현저히 낮다. 이는 학습 데이터의 클래스 불균형 문제로 이어지게 되고, 이러한 불균형 문제는 고장을 판별하는 분류 모델의 성능에 영향을 끼치게 된다. 이에 본 연구에서는 모터의 동작음으로부터 불량 모터를 판별하는 불량 검출 시스템 설계를 위한 데이터 불균형 해결 방법을 제안한다. 자동차 사이드 미러 모터의 동작음을 학습 및 테스트를 위한 데이터 셋으로 사용하였으며 손실함수 계산 시 학습 데이터 셋의 클래스별 샘플 수 가 반영되는 label-distribution-aware margin(LDAM) loss 와 Inception, ResNet, DenseNet 신경망 모델의 비교 분석을 통해 불균형 데이터를 처리할 수 있는 가능성을 보여주었다.

  • PDF

POC : Establishing Dataset for Artificial Intelligence-based Crack Detection (POC : 인공지능 기반 균열 탐지를 위한 데이터셋 구축)

  • Kim, Ji-Ho;Kim, Gyeong-Yeong;Kim, Dong-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.45-48
    • /
    • 2022
  • 건축물 안전 점검은 대부분 전문가의 현장 방문을 통한 육안검사다. 그중 균열 검사는 건물 위험도를 나타내는 중요한 지표로써 발생 위치, 진행성, 크기를 조사하는데, 최근 균열 조사 방식에 대해 객관성과 체계성을 보완할 딥러닝 개발이 활발하다. 그러나 균열 이미지는 외부 현장에 모양, 규모도 많은 종류라 도메인이 다양해야 하는데 대부분 제한된 환경과 실제적인 균열 검사와는 무관한 데이터로 구성되어 실효적이지 않다. 본 연구에서는 균열 조사에 적합하고 Wild 환경에 적용 가능한 POC 데이터셋을 소개한다. 기존 균열 공인 데이터셋 4종의 특징과 한계점을 분석을 토대로 고해상도 이미지로써 균열의 세부 특징을 담았고 균열 유사 환경과 조건들을 추가 촬영해 균열 검출에 강인하게 학습되도록 지향하였다. 정제 및 라벨링 작업을 거친 POC 데이터 셋은 균열 검출모델인 YOLO-v5으로 성능을 실험하였고, mAP(mean Average Precision) 75.5%로 높은 검출률을 보였다. POC 데이터셋으로 더욱 도메인에 적응적(Domain-adapted)인 인공지능 모델을 개발하여 건물, 댐, 교량 등 각종 대형 건축물에 대한 안전하고 효과적인 안전 관리 도구로써 활용할 것을 기대한다.

  • PDF