Journal of the Korea Society of Computer and Information
/
v.29
no.10
/
pp.35-45
/
2024
In this paper, we propose Multi-Scale Feature Knowledge Distillation for 3D Object Detection (M3KD), which extracting knowledge from the teacher model, and transfer to the student model consider with multi-scale feature map. To achieve this, we minimize L2 loss between feature maps at each pyramid level of the student model with the correspond teacher model so student model can mimic the teacher model backbone information which improves the overall accuracy of the student model. We apply the class logits knowledge distillation used in the image classification task, by allowing student model mimic the classification logits of the teacher model, to guide the student model to improve the detection accuracy. In KITTI (Karlsruhe Institute of Technology and Toyota Technological Institute) dataset, our M3KD (Multi-Scale Feature Knowledge Distillation for 3D Object Detection) student model achieves 30% inference speed improvement compared to the teacher model. Additionally, our method achieved an average improvement of 1.08% in 3D mean Average Precision (mAP) across all classes and difficulty levels compared to the baseline student model. Furthermore, when integrated with the latest knowledge distillation methods such as PKD and SemCKD, our approach achieved an additional 0.42% and 0.52% improvement in 3D mAP, respectively, further enhancing performance.
In this paper, vehicle tracking algorithm using hue transformation in HIS color model is proposed. the proposed algorithm is installed on the road of the two horizontal virtual data sampling lines. The difference images are detected between the frame and the frame, respectively and also detected in the vehicle by using the hue color distribution to determine identity and lane changes. To examine the effectiveness of proposed algorithm, identification and velocity measurement for driving vehicle are evaluated. this evaluated results is shown by hue data of vehicle passing of two virtual data sample lines, and the velocity measurement for driving vehicle is less than 0.4% comparing with existing vehicle speed meter system.
This paper is used the color space distribution HMMD model presented in MPEG-7 in order to segment and detect the wanted image parts as a real time without the user's manufacturing in the video object segmentation. Here, it is applied the wavelet morphology to remove a small part that is regarded as a noise in image and a part excepting for the face image. Also, it did the optimal composition by the rough set. In this paper, tile proposed video object detection algorithm is confirmed to be superior as detecting the face object exactly than the conventional algorithm by applying those to the different size images.put the of paper here.
Won Chul-Ho;Kim Dong-Hun;Lee Jung-Hyun;Woo Sang-Hyo;Cho Jin-Ho
Journal of Korea Multimedia Society
/
v.9
no.9
/
pp.1150-1159
/
2006
This paper proposed a curve progress control function of the area base instead of the existing edge indication function, in order to detect the brain ventricle area by utilizing a geodesic active contour model. The proposed curve progress control function is very effective in detecting the brain ventricle area and this function is based on the average brightness of the brain ventricle area which appears brighter in MRI images. Compared numerically by using various measures, the proposed method in this paper can detect brain ventricle areas better than the existing method. By examining images of normal and diseased brain's images by brain tumor, we compared the several brain ventricle detection algorithms with proposed method visually and verified the effectiveness of the proposed method.
Proceedings of the Korean Information Science Society Conference
/
2012.06b
/
pp.498-500
/
2012
비디오 해석 및 추적기술은 특정한 시스템에서만 적용되는 것이 아니다. 이것은 비디오 내에서 의미 있는 정보를 능동적으로 감시 대상을 정의, 해석, 모델화, 추정 및 추적 할 수 있는 기반 기술을 의미하다. 일반적으로 감시시스템에서 감시 대상은 사람이나 차량이며, 상황에 따라 출입통제 구역으로 설정하기도 한다. 이는 연속된 영상에서 객체의 형태, 모양, 행동 분석, 움직임, 색상정보를 가지고 데이터 정의, 검출, 모델화를 통하여 인식, 식별 그리고 추적한다. 본 논문에서는 비디오 영상분석을 통해 단일카메라기반의 감시시스템과 PTZ 카메라기반 감시시스템 제안한다. 이때 단일 카메라기반의 감시는 배경생성방법을 이용하여 연속된 영상내의 객체를 지속적으로 관리가 가능하도록 설계하였고, PTZ 카메라기반의 감시는 카메라의 이동에 따른 배경안정화 방법과 카메라의 절대좌표를 활용하여 카메라 이동을 제어함과 동시에 오검출 문제를 해결하였다. 실험 및 결과분석으로는 시나리오 환경에서 배경생성방법을 이용한 검출의 정확성과 PTZ카메라 위치 변화에도 강인한 검출 결과를 비교 분석하였다.
In this paper we proposed a vision based realtime hand gesture recognition method. To extract skin color, we translate RGB color space into YCbCr color space and use CbCr color for the final extraction. To find the center of extracted hand region we apply practical center point extraction algorithm. We use Kalman filter to tracking hand region and use HMM(Hidden Markov Model) algorithm (learning 6 type of hand gesture image) to recognize it. We demonstrated the effectiveness of our algorithm by some experiments.
The Journal of the Korea institute of electronic communication sciences
/
v.13
no.6
/
pp.1257-1262
/
2018
In this paper, a deep learning method is proposed to detect the fire effectively by using video of surveillance camera. Based on AlexNet model, classification performance is compared according to kernel size and stride of convolution layer. Dataset for learning and interfering are classified into two classes such as normal and fire. Normal images include clouds, and foggy images, and fire images include smoke and flames images, respectively. As results of simulations, it is shown that the larger kernel size and smaller stride shows better performance.
Seo, Dong-Kuk;Kim, Gun-Woo;Kim, Jae-Young;Lee, Dong-Ho
Annual Conference of KIPS
/
2020.11a
/
pp.1018-1021
/
2020
최근 개인정보가 포함된 비정형 텍스트 문서들이 유출되거나 무분별하게 공개됨으로써 정보의 주체는 물론 기업들까지 피해를 받고 있다. 데이터를 공개 및 활용하기 위해 개인정보 검출 및 비식별화 과정이 필수적이지만 정형 데이터와는 달리 비정형 데이터의 경우 해당 과정을 자동으로 처리하는 데 한계가 있다. 이를 위해 딥러닝 모델들을 사용하여 자동화하려는 연구들이 있었지만 문장 내 단어의 모호성에 대한 고려 없이 단어 개체명 정보에만 의존하여 개인정보를 검출하는 형태로 진행되었다. 따라서 문장 내 단어들 중 식별 대상인 단어들도 비식별화 되어 데이터에 대한 유용성을 저해할 수 있다는 문제점을 남겼다. 본 논문에서는 문장의 의도 정보를 단어의 개체명 학습 과정에 부가적인 정보로 활용하는 개인정보 검출 모델과 개인정보 데이터의 유용성을 고려한 비식별화 기법을 제안한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.1305-1307
/
2022
자동차 부품의 결함은 시스템 전체의 성능 저하 및 인적 물적 손실이 발생할 수 있으므로 생산라인에서의 불량 검출은 매우 중요하다. 따라서 정확하고 균일한 결과의 불량 검출을 위해 딥러닝 기반의 고장 진단 시스템이 다양하게 연구되고 있다. 하지만 제조현장에서는 정상 샘플보다 비정상 샘플의 발생 빈도가 현저히 낮다. 이는 학습 데이터의 클래스 불균형 문제로 이어지게 되고, 이러한 불균형 문제는 고장을 판별하는 분류 모델의 성능에 영향을 끼치게 된다. 이에 본 연구에서는 모터의 동작음으로부터 불량 모터를 판별하는 불량 검출 시스템 설계를 위한 데이터 불균형 해결 방법을 제안한다. 자동차 사이드 미러 모터의 동작음을 학습 및 테스트를 위한 데이터 셋으로 사용하였으며 손실함수 계산 시 학습 데이터 셋의 클래스별 샘플 수 가 반영되는 label-distribution-aware margin(LDAM) loss 와 Inception, ResNet, DenseNet 신경망 모델의 비교 분석을 통해 불균형 데이터를 처리할 수 있는 가능성을 보여주었다.
Proceedings of the Korean Society of Computer Information Conference
/
2022.07a
/
pp.45-48
/
2022
건축물 안전 점검은 대부분 전문가의 현장 방문을 통한 육안검사다. 그중 균열 검사는 건물 위험도를 나타내는 중요한 지표로써 발생 위치, 진행성, 크기를 조사하는데, 최근 균열 조사 방식에 대해 객관성과 체계성을 보완할 딥러닝 개발이 활발하다. 그러나 균열 이미지는 외부 현장에 모양, 규모도 많은 종류라 도메인이 다양해야 하는데 대부분 제한된 환경과 실제적인 균열 검사와는 무관한 데이터로 구성되어 실효적이지 않다. 본 연구에서는 균열 조사에 적합하고 Wild 환경에 적용 가능한 POC 데이터셋을 소개한다. 기존 균열 공인 데이터셋 4종의 특징과 한계점을 분석을 토대로 고해상도 이미지로써 균열의 세부 특징을 담았고 균열 유사 환경과 조건들을 추가 촬영해 균열 검출에 강인하게 학습되도록 지향하였다. 정제 및 라벨링 작업을 거친 POC 데이터 셋은 균열 검출모델인 YOLO-v5으로 성능을 실험하였고, mAP(mean Average Precision) 75.5%로 높은 검출률을 보였다. POC 데이터셋으로 더욱 도메인에 적응적(Domain-adapted)인 인공지능 모델을 개발하여 건물, 댐, 교량 등 각종 대형 건축물에 대한 안전하고 효과적인 안전 관리 도구로써 활용할 것을 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.