• Title/Summary/Keyword: 검출 모델

Search Result 1,728, Processing Time 0.041 seconds

Effectiveness of the Detection of Pulmonary Emphysema using VGGNet with Low-dose Chest Computed Tomography Images (저선량 흉부 CT를 이용한 VGGNet 폐기종 검출 유용성 평가)

  • Kim, Doo-Bin;Park, Young-Joon;Hong, Joo-Wan
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.411-417
    • /
    • 2022
  • This study aimed to learn and evaluate the effectiveness of VGGNet in the detection of pulmonary emphysema using low-dose chest computed tomography images. In total, 8000 images with normal findings and 3189 images showing pulmonary emphysema were used. Furthermore, 60%, 24%, and 16% of the normal and emphysema data were randomly assigned to training, validation, and test datasets, respectively, in model learning. VGG16 and VGG19 were used for learning, and the accuracy, loss, confusion matrix, precision, recall, specificity, and F1-score were evaluated. The accuracy and loss for pulmonary emphysema detection of the low-dose chest CT test dataset were 92.35% and 0.21% for VGG16 and 95.88% and 0.09% for VGG19, respectively. The precision, recall, and specificity were 91.60%, 98.36%, and 77.08% for VGG16 and 96.55%, 97.39%, and 92.72% for VGG19, respectively. The F1-scores were 94.86% and 96.97% for VGG16 and VGG19, respectively. Through the above evaluation index, VGG19 is judged to be more useful in detecting pulmonary emphysema. The findings of this study would be useful as basic data for the research on pulmonary emphysema detection models using VGGNet and artificial neural networks.

Development of a Deep Learning-based Fire Extinguisher Object Detection Model in Underground Utility Tunnels (딥러닝 기반 지하 공동구 내 소화기 객체 탐지 모델 개발)

  • Sangmi Park;Changhee Hong;Seunghwa Park;Jaewook Lee;Jeongsoo Kim
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.922-929
    • /
    • 2022
  • Purpose: The purpose of this paper is to develop a deep learning model to detect fire extinguishers in images taken from CCTVs in underground utility tunnels. Method: Various fire extinguisher images were collected for detection of fire extinguishers in the running-based underground utility tunnel, and a model applying the One-stage Detector method was developed based on the CNN algorithm. Result: The detection rate of fire extinguishers photographed within 10m through CCTV video in the underground common area is over 96%, showing excellent detection rate. However, it was confirmed that the fire extinguisher object detection rate drops sharply at a distance of 10m or more, in a state where it is difficult to see with the naked eye. Conclusion: This paper develops a model for detecting fire extinguisher objects in underground common areas, and the model shows high performance, and it is judged that it can be used for underground common area digital twin model synchronizing.

A Method based on Ontology for detecting errors in the Software Design (온톨로지 기반의 소프트웨어 설계에러검출방법)

  • Seo, Jin-Won;Kim, Young-Tae;Kong, Heon-Tag;Lim, Jae-Hyun;Kim, Chi-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2676-2683
    • /
    • 2009
  • The objective of this thesis is to improve the quality of a software product based on the enhancement of a software design quality using a better error detecting method. Also, this thesis is based on a software design method called as MOA(Methodology for Object to Agents) which uses an ontology based ODES(A Method based on Ontology for Detecting Errors in the Software Design) model as a common information model. At this thesis, a new format of error detecting method was defined. The method is implemented during a transformation process from UML model to ODES model using a ODES model, a Inter-View Inconsistency Detection technique and a combination of ontologic property of consistency framework and related rules. Transformation process to ODES model includes lexicon analysis and meaning analysis of a software design using of multiple mapping table at algorithm for the generation of ODES model instance.

Advanced Gaussian Mixture Learning for Complex Environment (개선된 적응적 가우시안 혼합 모델을 이용한 객체 검출)

  • Park Dae-Yong;Kim Jae-Min;Cho Seong-Won
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.283-289
    • /
    • 2005
  • Background Subtraction은 움직이는 물체 검출에 가장 많이 사용되는 방법 중 하나이다. 배경이 복잡하고 변화가 심한 경우, 배경을 실시간으로 얼마나 정확하게 학습하는가가 물체 검출의 정확도를 결정한다. Gaussian Mixture Model은 이러한 배경의 모델링에 가장 많이 쓰이는 방법이다. Gaussian Mixture Model은 확률적 학습 방법을 사용하는데, 이러한 방법은 물체가 자주 지나다니거나 물체가 멈춰있는 경우, 배경을 정확하게 모델링하지 못한다. 본 논문에서는 밝기 값에 대한 확률적 모델링과 밝기 값의 변화에 따른 처리를 결합하여 혼잡한 환경에서 배경을 정확하게 모델링할 수 있는 학습 방법을 제안한다.

  • PDF

Tool Wear and Chatter Detection in Turning via Time-Series Modeling and Frequency Band Averaging (선삭가공에서 시계열모델 밑 주파수대역에너지법에 의한 공구마멸과 채터의 검출)

  • ;Y.S. Chiou;S.Y. Liang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.75-84
    • /
    • 1994
  • 기계가공프로세스에서 절삭공구의 마멸과 채터진동은 공작기계의 가동율과 생산성을 크게 저해하는 요인이 되고 있다. 본 연구에서는 공구마멸과 채터현상이 혼재하는 상황에서, 이들 두 현상을 동시에 검출하는데, AE 및 가속도센서에서 검출된 신호와 AR계수 및 주파수대역 평균에너지를 특징입력으로 하는 인공신경회로망을 이용하였다. 그 결과, 공구마멸과 채터현상에 대응하는 서로 다른 신호특징의 차이를 동시에 식별하는 데 인공신경 회로망의 유용성을 입증하였으며, 시계열모델의 AR계수(70 .approx. 90%)보다는 주파수대역에너지법의 평균에너지 (80 .approx. 100%)를 신경회로망의 특징입력으로 하는 경우가 높은 성공률을 나타내었다.

  • PDF

Diagnosis of Diffuse Lung Disease by Quantitative Analysis (정량적 방법에 의한 미만성 폐질환 진단)

  • 원철호;김명남;이종민;최태진;강덕식
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.5
    • /
    • pp.545-557
    • /
    • 1999
  • 본 논문에서는 호흡 연동 장치와 EBT로부터 획득한 폐실질 영상에 대하여 동적 윤곽선 모델 방법과 영역 성장법을 이용하여 폐실질 영역을 검출하였다. 그런 다음 , 검출된 폐실질 영역내에서의 각종 정량적 요소들을 도출하여 농도 분포 곡선에대한 분석을 하였다. 동적 윤곽선 모델방법에서 페실질 영역의 낮은 휘도 준위와 폐의 윤곽선 벡터 방향을 고려한 에너지 함수를 제안하였다. 그리고 폐실질 영역 성장법에서는 폐실질 영역내의 분포한 공기 성분에 대한 화소를 확장시켜 효과적으로 폐실질 영역을 검출하였다. 추출된 폐실질 영역내의 빈도 분포 곡선을 분석하여 정상군과 비교한 결과 만성 폐쇄성 폐질환자에서는 정상인에 비하여 평균 농도,최대 빈도 농도, 최대 상승 기울기 농도가 낮았으며, 농도 분포곡선은 더 낮은 쪽으로 이동하였음을 알 수 있었다. 또한, 특발성 폐섬유증 환자에서는 평균 농도, 최대 빈도 농도, 최대 상승 기울기 농도가 모두 증가되었고 농도 분포 곡선은 더 높은쪽으로 이동하였다. 폐실질 영역을 추출하여 히스토그램 분포에 대한 정량적 분석을 함으로써 정상인으로부터 만성 폐쇄성 질환자의 폐섬유증 환자를 구분할 수 있었다.

  • PDF

Detecting Structural Anomalies in a BPMN-based Business Process Model using Graph Reduction Techniques (BPMN 기반의 비즈니스 프로세스 모델에서 그래프 축소 기법을 활용한 구조적 이상 현상 검출)

  • Kim, Gun-Woo;Lee, Seung Hoon;Lee, Jeong Hwa;Son, Jin Hyun
    • Annual Conference of KIPS
    • /
    • 2009.04a
    • /
    • pp.479-482
    • /
    • 2009
  • 급변하는 경영 환경에서 기업의 목표나 정책목적을 실현하기 위해 많은 기업들이 비즈니스 프로세스의 중요성을 인식하게 되면서 비즈니스 프로세스 관리에 대한 관심이 높아졌다. 이러한 비즈니스 프로세스를 관리하기 위해 일반적으로 모델링 작업을 수행하게 되는데 모델링 작업 시 예기치 못한 여러 가지 이상 현상을 포함 될 수 있다. 본 논문에서는 본 연구자가 발표한 선행 논문을 바탕으로 기존의 이상 현상 검출 기법 중 그래프 축소 기법을 확장하여 모델링 단계에서 정의된 비즈니스 프로세스 모델의 구조적 이상 현상을 검출하고 명제 논리학을 이용하여 이의 타당성을 증명하였다.

A Study on the Construction of Image Datasets for Object Detection of Painting Cultural Heritage (회화문화재 객체검출을 위한 학습용 이미지 데이터셋 구축 방안 연구)

  • Kwon, Do-Hyung;Yu, Jeong-Min
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.853-855
    • /
    • 2021
  • 본 연구는 회화문화재 속에 표현된 다양한 종류의 객체를 검출할 수 있는 딥러닝 모델생성을 위해 필요한 학습용 이미지 데이터셋 구축방안을 제안한다. 먼저 기존 동양화 기반의 회화문화재 이미지 데이터 및 객체 특징 분석을 진행하였고, 이를 바탕으로 Natural image에 Pose transfer 및 Style transfer를 적용한 새로운 방식의 회화문화재 이미지 데이터 생성 방법을 제안한다. 제안한 프레임워크를 통해 기존 문화재 분야에서 가지고 있던 제한된 데이터 구축문제를 극복하고, 검출모델 생성을 위한 대용량의 학습데이터 구축 가능성을 제시하였다.

Anomaly Detection in printed patters using U-Net (U-Net 모델을 이용한 비정상 인쇄물 검출 방법)

  • Hong, Soon-Hyun;Nam, Hyeon-Gil;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.686-688
    • /
    • 2020
  • 본 논문에서는 U-Net 모델을 이용하여 정교하고 반복되는 패턴을 가진 인쇄물에 대한 비지도 학습을 통한 딥러닝 기반 이상치탐지(Anomaly Detection) 방법을 제안하였다. 인쇄물(카드)의 비정상 패턴 검출을 위하여 촬영한 영상으로부터 카드 영역을 분리한 이미지로 구성된 Dataset을 구축하였고 정상 이미지와 동일한 이미지를 출력하기 위해, 정상 이미지와 마스크 이미지 쌍의 Training dataset을 U-Net으로 학습하였다. Test dataset의 이미지를 입력으로 넣어 생성된 마스크 결과를 원본 마스크 이미지와 비교하여 이상 여부를 판단하는 본 논문의 방법이 정상, 비정상 인쇄물을 잘 구분하는 것을 확인하였다. 또한 정상과 비정상 이미지 각각을 학습한 지도학습 기반 CNN 분류 방법을 입력 영상과 복원 영상 간의 복원 오차를 비교하여 객체의 이상 여부를 판별하는 본 논문의 방법과 비교 평가하였다. 본 논문을 통해 U-Net을 사용하여 별도로 데이터에 대한 label 취득 없이 이상치를 검출할 수 있음을 확인할 수 있었다.

  • PDF

The Detection of Multi-class Vehicles using Swin Transformer (Swin Transformer를 이용한 항공사진에서 다중클래스 차량 검출)

  • Lee, Ki-chun;Jeong, Yu-seok;Lee, Chang-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.112-114
    • /
    • 2021
  • In order to detect urban conditions, the number of means of transportation and traffic flow are essential factors to be identified. This paper improved the detection system capabilities shown in previous studies using the SwinTransformer model, which showed higher performance than existing convolutional neural networks, by learning various vehicle types using existing Mask R-CNN and introducing today's widely used transformer model to detect certain types of vehicles in urban aerial images.

  • PDF