In this paper, a lightweight network with fewer parameters compared to the existing object detection method is proposed. In the case of the currently used detection model, the network complexity has been greatly increased to improve accuracy. Therefore, the proposed network uses EfficientNet as a feature extraction network, and the subsequent layers are formed in a pyramid structure to utilize low-level detailed features and high-level semantic features. An attention process was applied between pyramid structures to suppress unnecessary noise for prediction. All computational processes of the network are replaced by depth-wise and point-wise convolutions to minimize the amount of computation. The proposed network was trained and evaluated using the PASCAL VOC dataset. The features fused through the experiment showed robust properties for various objects through a refinement process. Compared with the CNN-based detection model, detection accuracy is improved with a small amount of computation. It is considered necessary to adjust the anchor ratio according to the size of the object as a future study.
Journal of the Institute of Convergence Signal Processing
/
v.22
no.2
/
pp.85-90
/
2021
A ADAS(Advanced Driver Assistance System) for the safe driving is an important area in autonumous car. Specially, a ADAS software using an image sensors attached in previous car is low in building cost, and utilizes for various purpose. A algorithm for detecting the break-lamp from the tail-lamp of preceding vehicle is proposed in this paper. This method can perceive the driving condition of preceding vehicle. Proposed method uses the YOLO techinicque that has a excellent performance in object tracing from real scene, and extracts the intensity variable region of break-lamp from HSV image of detected vehicle ROI(Region Of Interest). After detecting the candidate region of break-lamp, each isolated region is labeled. The break-lamp region is detected finally by using the proposed selective-attention model that percieves the shape-similarity of labeled candidate region. In order to evaluate the performance of the preceding vehicle break-lamp detection system implemented in this paper, we applied our system to the various driving images. As a results, implemented system showed successful results.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.1
/
pp.44-49
/
2021
Recently, due to COVID-19, studies have been popularly worked to apply neural network to mask wearing automatic detection system. For applying neural networks, the 1-stage detection or 2-stage detection methods are used, and if data are not sufficiently collected, the pretrained neural network models are studied by applying fine-tuning techniques. In this paper, the system is consisted of 2-stage detection method that contain MTCNN model for face recognition and ResNet model for mask detection. The mask detector was experimented by applying five ResNet models to improve accuracy and fps in various environments. Training data used 17,217 images that collected using web crawler, and for inference, we used 1,913 images and two one-minute videos respectively. The experiment showed a high accuracy of 96.39% for images and 92.98% for video, and the speed of inference for video was 10.78fps.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.9
/
pp.1330-1339
/
2022
3D object detection generally aims to detect relatively large data such as automobiles, buses, persons, furniture, etc, so it is vulnerable to small object detection. In addition, in an environment with limited resources such as embedded devices, it is difficult to apply the model because of the huge amount of computation. In this paper, the accuracy of small object detection was improved by focusing on local features using only one layer, and the inference speed was improved through the proposed knowledge distillation method from large pre-trained network to small network and adaptive quantization method according to the parameter size. The proposed model was evaluated using SUN RGB-D Val and self-made apple tree data set. Finally, it achieved the accuracy performance of 62.04% at mAP@0.25 and 47.1% at mAP@0.5, and the inference speed was 120.5 scenes per sec, showing a fast real-time processing speed.
Journal of the Korea Institute of Information and Communication Engineering
/
v.10
no.7
/
pp.1332-1337
/
2006
In this paper, a noble second stage hetero-estimator is used for positioning error detection in mobile robot. Previous methods are either expensive in the case of positioning error correction or not able to detect positioning error. To overcome the latter shortage, the positioning error detection is performed using second stage hetero-estimator in motor model of mobile robot without any additional costs. A Kalman filter in the estimator gets the residual of motor current and an adaptive self-tunning filter checks the whiteness of the residual. Some simulation results show the possibility of the proposed method.
Journal of the Korean Institute of Telematics and Electronics
/
v.27
no.10
/
pp.60-67
/
1990
This paper proposes a model-based fault detection method for linear/nonlinear system having modelling errors, nonlinearities and measurement noise. The system model is represented by the unified operator [5] in order to apply to both the continuous-time and discrete-time problems. The fault detection method suggested here accounts for the effects of noise, model mismatch and nonlinearities. Modelling errors are depicted by additive forms and the nominal model denominator is fixed via prior experiments in order to quantify the nucertainty bound on the parameter estima-tion. The least square method is used to estimate the numerator parameters of the nominal model. performance than traditional methods.
A method has been proposed for the fully automatic detection of left ventricular endocardial boundary in 2D short axis echocardlogram using geometric model. The procedure has the following three distinct stages. First, the initial center is estimated by the initial center estimation algorithm which is applied to decimated image. Second, the center estimation algorithm is applied to original image and then best-fit elliptic model estimation is processed. Third, best-fit boundary is detected by the cost function which is based on the best-fit elliptic model. The proposed method shows effective result without manual intervention by a human operator.
차량에 부착된 CCD 카메라를 이용하여 취득된 도로 주변의 영상에 존재하는 사람의 얼굴을 추출하여 제거하는 처리를 할 경우, 사생활 침해의 문제 없이 사용자들에게 원하는 지역의 도로영상의 제공이 가능해진다. 이 실험의 목적은 차량에서 취득된 도로 주변의 칼라 영상에서 사람의 얼굴을 자동으로 추출하는 기술을 개발하는데에 있다. 도로 주변의 CCD영상에서의 얼굴 추출을 위해, HSI(색상, 채도, 명도) 칼라 모델과 YCrCb 칼라 모델을 사용하여 이들 모델에 임계값을 적용하여 피부색을 검출하였으며, 두 개의 모델을 사용한 결과 효과적인 피부색의 검출이 가능함을 확인할 수 있었다. 검출된 피부색 영역을 연결성과 밝기 차이를 이용하여 클러스터링을 실행하고 이렇게 나뉘어진 각각의 구역들에 구역의 면적, 구역내 존재하는 화소의 개수, 구역의 가로와 세로 비율 그리고 타원조건을 적용하여 얼굴 후보 구역을 결정하였다. 그리고 최종적으로 남겨진 구역을 이진화 하고, 이진화 된 영상 중 검은 부분이 5% 이상일 때 이들을 눈, 코, 입 등으로 간주하여 최종적인 얼굴로 결정하였다. 실험 결과 추출되지 않은 얼굴과 잘못 추출된 구역이 발생했으나, 얼굴에 해당하는 임계값등의 조건을 약화시킬 경우 대부분의 얼굴의 추출이 가능할 것으로 여겨지며, 추출된 구역을 흐리게 처리할 경우 오인식된 부분에 대한 사용자의 거부감도 줄일 수 있을 것 으로 예상된다.
KIPS Transactions on Software and Data Engineering
/
v.10
no.3
/
pp.109-114
/
2021
GAN(Generative Adversarial Network) is an image generation model, which is composed of a generator network and a discriminator network, and generates an image similar to a real image. Since the image generated by the GAN should be similar to the actual image, a loss function is used to minimize the loss error of the generated image. However, there is a problem that the loss function of GAN degrades the quality of the image by making the learning to generate the image unstable. To solve this problem, this paper analyzes GAN-related studies and proposes an edge GAN(eGAN) using edge detection. As a result of the experiment, the eGAN model has improved performance over the existing GAN model.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2013.06a
/
pp.331-334
/
2013
본 논문에서는 차량에 부착된 4대의 어안렌즈 카메라 영상을 이용하여 차량 주위 전방향의 주변 정보를 포함하는 정합 영상을 생성하고, 생성된 정합 영상에서 차선을 검출하는 알고리즘을 제안한다. 기존의 전방 카메라만을 이용하여 차선을 검출하는 방법들은 안개와 같이 기상 환경이 안 좋은 경우 가시거리가 짧아져 정상적인 차선 검출이 어려운 문제가 있다. 이에 반해 4대의 어안렌즈 카메라로 차량의 주변을 촬영한 영상은 기상 환경에 영향을 적게 받아 안정적인 차선 검출에 용이하다. 어안렌즈 카메라로 촬영한 영상은 왜곡이 심하기 때문에 왜곡 보정을 수행한 후 차량 위에서 아래로 내려다본 시점으로 투영 변환하여 하나의 영상으로 정합한다. 정합영상에서 관심영역을 설정한 후 차선 후보 영역을 검출하고, 검출된 후보 영역들로 차선을 직선으로 모델링한다. 점선 차선 구간이나 차량 흔들림에 대응하기 위해 직선으로 모델링된 차선 정보의 차선 각도와 차량으로부터 거리 정보를 칼만 필터 기반 추적 및 보정하여 안정적으로 차선 검출을 수행한다. 실험 결과 제안하는 방법은 실선구간에서 99.57%, 점선구간에서는 90.48%의 검출 정확도를 가진다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.