• Title/Summary/Keyword: 검출 모델

Search Result 1,728, Processing Time 0.032 seconds

A Hardware Implementation of Moving Object Detection Algorithm using Gaussian Mixture Model (가우시안 혼합 모델을 이용한 이동 객체 검출 알고리듬의 하드웨어 구현)

  • Kim, Gyeong-hun;An, Hyo-Sik;Shin, Kyung-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.407-409
    • /
    • 2015
  • In this paper, a hardware implementation of MOD(Moving Object Detection) algorithm is described, which is based GMM(Gaussian Mixture Model) and background subtraction. The EGML(Effective Gaussian Mixture Learning) is used to model and update background. Some approximations of EGML calculations are applied to reduce hardware complexity, and pipelining technique is used to improve operating speed. Gaussian parameters are adjustable according to various environment conditions to achieve better MOD performance. MOD processor is verified by using FPGA-in-the-loop verification, and it can operate with 109 MHz clock frequency on XC5VSX95T FPGA device.

  • PDF

Performance Analysis of Common Spreading Code CDMA Packet Radio Systems with Multiple Capture Capability (다중캡쳐 특성의 단일확산코드 CDMA 패킷 라디오 시스팀들의 성능 분석)

  • 김동인
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.12
    • /
    • pp.1286-1299
    • /
    • 1991
  • In this paper we present a multiple capture model for common spreading code CDMA packet radio systems with star topology. Basic equations for the collision free, header detection. and multiple capture probabilities are derived at the central receiver. Link performances. including the average number of packet captures, allowable number of simultaneous transmission, and system throughput are theoretically evaluated for a hybrid system. combining envelope header detection and differential data detection, Using the Block Oriented Systems Simulator(BOSS), simulations were carried out for the central receivers with envelope or differential geader detection, It is shown that for a threshold approx-imation to the probability of data packet success, the mulyiple capture model significantly improves system throughput.

  • PDF

Forgery Detection Scheme Using Enhanced Markov Model and LBP Texture Operator in Low Quality Images (저품질 이미지에서 확장된 마르코프 모델과 LBP 텍스처 연산자를 이용한 위조 검출 기법)

  • Agarwal, Saurabh;Jung, Ki-Hyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1171-1179
    • /
    • 2021
  • Image forensic is performed to check image limpidness. In this paper, a robust scheme is discussed to detect median filtering in low quality images. Detection of median filtering assists in overall image forensic. Improved spatial statistical features are extracted from the image to classify pristine and median filtered images. Image array data is rescaled to enhance the spatial statistical information. Features are extracted using Markov model on enhanced spatial statistics. Multiple difference arrays are considered in different directions for robust feature set. Further, texture operator features are combined to increase the detection accuracy and SVM binary classifier is applied to train the classification model. Experimental results are promising for images of low quality JPEG compression.

High-speed Object Detection in a Mobile Terminal Environment (휴대단말 고속 객체 검출)

  • Lee, Jae-Ho;Lee, Chul-Hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.646-648
    • /
    • 2012
  • In this paper, an image detection technique is proposed to extract image features in a mobile terminal environment. To detect objects, the HSI color model of the image is used. The object's corner points are detected using the Harris corner detection method. Finally we detect the object of interest using region growing The experiment results show that the proposed method improves detection performance and reduces the amount of computation.

  • PDF

A Realtime Expression Control for Realistic 3D Facial Animation (현실감 있는 3차원 얼굴 애니메이션을 위한 실시간 표정 제어)

  • Kim Jung-Gi;Min Kyong-Pil;Chun Jun-Chul;Choi Yong-Gil
    • Journal of Internet Computing and Services
    • /
    • v.7 no.2
    • /
    • pp.23-35
    • /
    • 2006
  • This work presents o novel method which extract facial region und features from motion picture automatically and controls the 3D facial expression in real time. To txtract facial region and facial feature points from each color frame of motion pictures a new nonparametric skin color model is proposed rather than using parametric skin color model. Conventionally used parametric skin color models, which presents facial distribution as gaussian-type, have lack of robustness for varying lighting conditions. Thus it needs additional work to extract exact facial region from face images. To resolve the limitation of current skin color model, we exploit the Hue-Tint chrominance components and represent the skin chrominance distribution as a linear function, which can reduce error for detecting facial region. Moreover, the minimal facial feature positions detected by the proposed skin model are adjusted by using edge information of the detected facial region along with the proportions of the face. To produce the realistic facial expression, we adopt Water's linear muscle model and apply the extended version of Water's muscles to variation of the facial features of the 3D face. The experiments show that the proposed approach efficiently detects facial feature points and naturally controls the facial expression of the 3D face model.

  • PDF

Small Target Detection in Multi-Resolution Image Using Facet Model (다중 해상도 영상에서 페이싯 모델을 이용한 초소형 표적 검출)

  • Park, Ji-Hwan;Lee, Min-Woo;Lee, Chul-Hun;Joo, Jae-Heum;Nam, Ki-Gon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.2
    • /
    • pp.76-82
    • /
    • 2011
  • In this paper, we propose the technique to detect the location and size of the small target in multi-resolution image using cubic facet model. The input image is reduced by the multi-resolution and we obtain the multi-resolution images. We apply the facet model and the local maxima conditions to the multi-resolution images of each level. And then, we detect the location of the small target. We estimate that the location at the maximum of the $D_2$ which means the local maxima value of the facet model in the multi-resolution images is the location of the small target. We can detect the small target of the various size about the multi-resolution images of each level. In this paper, we experimented in the various infrared images with the small target. The method using the typical facet model applies a mask. However, the proposed method applies a mask in the multi-resolution images. We verified to vary the mask size and differ the size of the small target. The proposed algorithm can detect the location and size of the small target.

Improving Dialogue Intent Classification Performance with Uncertainty Quantification based OOD Detection (불확실성 정량화 기반 OOD 검출을 통한 대화 의도 분류 모델의 성능 향상)

  • Jong-Hun Shin;Yohan Lee;Oh-Woog Kwon;Young-Kil Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.517-520
    • /
    • 2022
  • 지능형 대화 시스템은 줄곧 서비스의 목표와 무관한 사용자 입력을 전달받아, 그 처리 성능을 의심받는다. 특히 종단간 대화 이해 생성 모델이나, 기계학습 기반 대화 이해 모델은 학습 시간대에 한정된 범위의 도메인 입력에만 노출됨으로, 사용자 발화를 자신이 처리 가능한 도메인으로 과신하는 경향이 있다. 본 연구에서는 대화 생성 모델이 처리할 수 없는 입력과 신뢰도가 낮은 생성 결과를 배제하기 위해 불확실성 정량화 기법을 대화 의도 분류 모델에 적용한다. 여러 번의 추론 샘플링이 필요 없는 실용적인 예측 신뢰도 획득 방법과 함께, 평가 시간대와 또다른 도메인으로 구성된 분포 외 입력 데이터를 학습에 노출시키는 것이 분포 외 입력을 구분하는데 도움이 되는지를 실험으로 확인한다.

  • PDF

A Study on Deep Learning Model for Container Load Status Monitoring (컨테이너 적재 상태 모니터링을 위한 딥러닝 모델 연구)

  • Oh, Seyeong;Jeong, Junho;Choi, Bulim;Yeon, Jeong Hum;Seo, Yonguk;Kim, Sangwoo;Youn, Joosang
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.320-321
    • /
    • 2022
  • 부두 내 컨테이너를 적재하는 과정에서 정렬 상태가 부정확한 경우 강풍으로 인한 안전사고가 발생할 가능성이 있다. 본 논문에서는 컨테이너 안전사고를 예방하기 위한 딥러닝 기반의 컨테이너 정렬 상태 분류 알고리즘을 제안한다. 제안하는 알고리즘은 정렬을 분류하는 기준을 제시하고 YOLO 기반의 모델을 구현했다. 추론 속도, 검출 정확도, 분류 정확도를 기준으로 각 모델의 성능을 평가했으며 성능 결과는 YOLOv4모델이 YOLOv3모델에 비해서 추론 속도는 느리지만, 검출 정확도와 분류 정확도는 높음을 보인다.

A Pedestrian Detection Method using Deep Neural Network (심층 신경망을 이용한 보행자 검출 방법)

  • Song, Su Ho;Hyeon, Hun Beom;Lee, Hyun
    • Journal of KIISE
    • /
    • v.44 no.1
    • /
    • pp.44-50
    • /
    • 2017
  • Pedestrian detection, an important component of autonomous driving and driving assistant system, has been extensively studied for many years. In particular, image based pedestrian detection methods such as Hierarchical classifier or HOG and, deep models such as ConvNet are well studied. The evaluation score has increased by the various methods. However, pedestrian detection requires high sensitivity to errors, since small error can lead to life or death problems. Consequently, further reduction in pedestrian detection error rate of autonomous systems is required. We proposed a new method to detect pedestrians and reduce the error rate by using the Faster R-CNN with new developed pedestrian training data sets. Finally, we compared the proposed method with the previous models, in order to show the improvement of our method.

Proposal of speaker change detection system considering speaker overlap (화자 겹침을 고려한 화자 전환 검출 시스템 제안)

  • Park, Jisu;Yun, Young-Sun;Cha, Shin;Park, Jeon Gue
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.5
    • /
    • pp.466-472
    • /
    • 2021
  • Speaker Change Detection (SCD) refers to finding the moment when the main speaker changes from one person to the next in a speech conversation. In speaker change detection, difficulties arise due to overlapping speakers, inaccuracy in the information labeling, and data imbalance. To solve these problems, TIMIT corpus widely used in speech recognition have been concatenated artificially to obtain a sufficient amount of training data, and the detection of changing speaker has performed after identifying overlapping speakers. In this paper, we propose an speaker change detection system that considers the speaker overlapping. We evaluated and verified the performance using various approaches. As a result, a detection system similar to the X-Vector structure was proposed to remove the speaker overlapping region, while the Bi-LSTM method was selected to model the speaker change system. The experimental results show a relative performance improvement of 4.6 % and 13.8 % respectively, compared to the baseline system. Additionally, we determined that a robust speaker change detection system can be built by conducting related studies based on the experimental results, taking into consideration text and speaker information.