Proceedings of the Korean Institute of Information and Commucation Sciences Conference (한국정보통신학회:학술대회논문집)
- 2015.05a
- /
- Pages.407-409
- /
- 2015
A Hardware Implementation of Moving Object Detection Algorithm using Gaussian Mixture Model
가우시안 혼합 모델을 이용한 이동 객체 검출 알고리듬의 하드웨어 구현
- Kim, Gyeong-hun (Kumoh National Institute of Technology) ;
- An, Hyo-Sik (Kumoh National Institute of Technology) ;
- Shin, Kyung-wook (Kumoh National Institute of Technology)
- Published : 2015.05.26
Abstract
In this paper, a hardware implementation of MOD(Moving Object Detection) algorithm is described, which is based GMM(Gaussian Mixture Model) and background subtraction. The EGML(Effective Gaussian Mixture Learning) is used to model and update background. Some approximations of EGML calculations are applied to reduce hardware complexity, and pipelining technique is used to improve operating speed. Gaussian parameters are adjustable according to various environment conditions to achieve better MOD performance. MOD processor is verified by using FPGA-in-the-loop verification, and it can operate with 109 MHz clock frequency on XC5VSX95T FPGA device.
가우시안 혼합 모델(GMM)과 배경 차분 기법을 이용한 이동 객체 검출(MOD) 알고리듬을 하드웨어로 구현하였다. 구현된 MOD 프로세서는 EGML(Effective Gaussian Mixture Learning)을 기반으로 배경을 생성하고 업데이트하며, EGML 계산 일부의 근사화를 통해 하드웨어 복잡도를 줄였고, 파이프라이닝 기법을 통해 동작속도를 개선하였다. 또한 가우시안 파라미터들을 가변시킬 수 있도록 함으로써 다양한 조건에서 이동 객체 검출 성능이 향상되도록 구현하였다. 설계된 회로는 FPGA-in-the-loop방식으로 하드웨어 동작을 검증하였으며, XC5VSX95T FPGA 디바이스에서 최대 109 MHz의 클록 주파수로 동작 가능한 것으로 평가되었다.