Proceedings of the Korean Society of Broadcast Engineers Conference
/
2017.06a
/
pp.107-108
/
2017
횡단보도 인근에서는 보행취약자의 사고가 끊이지 않고 있으며 사고예방 및 사고의 절감을 위하여 선제적안 안전시스템의 개발이 요구되고 있다. 선제적 안전시스템의 개발을 위하여 빅데이터를 이용한 안전 데이터 도출, 영상분석을 이용한 보행자 행동특성 모니터링 시스템의 개발 및 사고감소를 위한 안전 시스템 개발이 진행되고 있다. 보행취약자 위험상황 판단에 대한 정의를 빅데이터 분석을 통해 도출하고 횡단보도 주변 안전 시스템의 개발을 기존 시스템에 적용 및 새로운 시스템을 개발하며 이에 적합한 딥러닝 영상분석 시스템을 개발하였다. 본 논문에서는 딥러닝 모델을 이용하여 객체의 검출, 분석을 수행하는 객체 검출부, 객체의 포즈와 행동을 보여주는 영상 분석부로 구성되어 있으며 기존 모델을 응용하여 최적화한 모델을 적용하였다. 딥러닝 모델의 구동은 리눅스 서버에서 운용되고 있으며 딥러닝 모델 구동을 위한 여러 툴을 적용하였다. 본 연구를 통하여 보행취약자의 검출, 추적, 보행취약자의 포즈 및 위험상황을 인식하고 안전시스템과 연계할 수 있도록 구성하였다.
Proceedings of the Korean Society of Computer Information Conference
/
2024.01a
/
pp.41-43
/
2024
본 연구에서는 Vision Transformer 기반의 Anomaly Detection and Localization (VT-ADL) 모델에 초점을 맞추고, 손실 함수의 변경이 MVTec 데이터셋에 대한 이상 검출 및 지역화 성능에 미치는 영향을 비교 분석한다. 기존의 손실 함수를 KL Divergence와 Log-Likelihood Loss의 조합인 VAE Loss로 대체하여, 성능 변화를 심층적으로 조사했다. 실험을 통해 VAE Loss로의 전환은 VT-ADL 모델의 이상 검출 능력을 현저히 향상시키며, 특히 PRO-score에서 기존 대비 약 5%의 개선을 보였다는 점을 확인하였다. 이러한 결과는 손실 함수의 최적화가 VT-ADL 모델의 전반적인 성능에 중요한 영향을 미칠 수 있음을 시사한다. 또한, 이 연구는 Vision Transformer 기반 모델의 이상 검출과 지역화 작업에 있어서 손실 함수 선택의 중요성을 강조하며, 향후 관련 연구에 유용한 기준을 제공할 수 있을 것으로 기대된다.
Proceedings of the Korean Society of Precision Engineering Conference
/
1993.10a
/
pp.76-78
/
1993
간접적인 방법으로 가공중(In process)공구상태를 감시하기 위해, 센서신호를 분석하는 방법으로 시간영역 (Time Domain) 해석과 주파수 영역(Frequency Domain)해석이 주로 이용되어 왔다. 시간영역해석의 경우 RMS,PEak Value, 평균/분산을 이용한 정적분석과 AR 모델, ARMA 모델, Kalman Filter등 동적 시계열 모델이 연구되어 왔다. 주파수영역해석의 경우 푸리에 변환 (Fourier Transform)에 의한 신호해석 기술이 주로 이용되고 있다. 그러나 푸리에 변환된 결과에는 시간정보가 포함되어 있지 않고, 국부적인 변환결과가 전체를 대표하는 성질을 가지고 있다. 이에 비해 웨이브렛(Wavelet) 변환은 고주파성분에 대해서는 시간분해능이 높고, 저주파 성분에 대해서는 주파수분해능이 높은 다중해상도 해석기술로서 국소적인 변동점을 민검하게 검지하는 것이 가능하다. 본연구에서는 엔드밀 가공중 발생하는 공구의 파손을 검출하기 위해, 전류센서로 부터 얻은 이송축 부하 전류의 변화에 웨이브렛 변환을 통해 공구의 파손을 검출하는 방법에 대한 연구결과를 소개한다.
Proceedings of the Korean Information Science Society Conference
/
2007.06c
/
pp.422-426
/
2007
음성 질의에서 효율적으로 onset을 검출하기 위한 연구는 다양하게 이루어져 왔다. 특히 대부분의 연구는 확률론적 모델에서 큰 성과를 나타내고 있다. 그러나 이러한 모델들은 변화나 확장이 쉽지 않다는 단점을 가지고 있다. 본 논문에서는 동적 확장 가능한 다중 계층 신경망(Dynamic Expansible MLP)을 제안하여, 기존 방법론의 확장 가능성을 모색한다. 또한, 음성 질의의 onset을 검출하기 위해 MLP를 활용하기 위한 모델을 제시한다.
An effective scheme to detect and diagnose multiple failures in a dynamic system is described for the case where the measurement noise is correlated sequentially in time. It is based on the modified interacting multiple model (MIMM) estimation algorithm in which a generalized decorrelation process is developed by employing the autoregressive (AR) model for the colored noise and applying measurement difference method.
Proceedings of the Acoustical Society of Korea Conference
/
autumn
/
pp.81-84
/
2001
본 논문은 중규모 단어급의 핵심어 검출 시스템에서 인식률 향상을 위해 미등록어 거절(Out-of-Vocabulary rejection) 기능을 제어하기 위한 연구이다. 이것은 핵심어 검출기에서 인식된 결과를 확인하는 과정으로 검증시스템이 구현되기 위해서는 매 음소마다 검증 기능이 필요하고, 이를 위해서 반음소(anti-phoneme model) 모델을 사용하였다. 검증의 역할은 인식기에서 인식된 단어가 등록어인지 미등록어인지 판별하는 것이다. 단어인식기는 비터비 탐색을 하므로, 기본적으로 단어단위로 인식을 하지만 그 인식된 단어는 내부적으로 음소단위로 인식된다. 따라서, 최소 검증 오류를 갖는 반음소 모델을 사용하고, 이를 이용하여 인식된 음소 단위들을 각각의 반음소 모델과 비교하여 통계적인 방법에 의해 신뢰도를 구한다 이 음소단위의 신뢰도를 단어 단위의 신뢰도로 환산하기 위해서 음소단위를 평균 내는 방식 을 취한다. 이렇게 함으로서, 등록어와 미등록어 사이의 분별력을 크게 하여 향상된 인식 성능을 얻었다.
본 논문에서는 3D 모델의 눈 변형을 계산하기 위해 검출된 눈 형태를 이용한 눈 움직임 합성 방법을 제안하였다. 얼굴 특징들의 정확한 위치 측정과 추적은 MPEG-4 코딩 시스템을 기반으로 한 고품질 모델 개발에 중요하다. 매우 낮은 비트율의 영상회의 응용에서 시간의 경과에 따라 눈과 입술의 움직임을 정확히 추적하기 위해 얼굴 특징들의 정확한 위치 측정과 추적이 필요하다. 이들의 움직임은 코딩되어지고 원격지로 전송되어 질 수 있다. 애니메이션 기술은 얼굴 모델에서 움직임을 합성하는데 이용되어진다. 본 논문에서는 얼굴 특징 검출과 추적 알고리즘으로 잘 알려지고, 효과적으로 향상시킬 수 있는 휴리스틱 방법을 제안하겠다. 본 논문에서는 눈 움직임의 검출뿐만 아니라 추적, 모델링에도 초점을 두었다.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.856-858
/
2005
음성인식 시스템에서 입력된 음성 데이터에 대해 비인식 대상을 거부하는 기능은 신뢰도 보장 측면에 있어서 상당히 중요하며, 신뢰도를 높이기 위해서는 단순한 인식기능 외에 부적절한 입력 패턴의 거부 기능이 필요하다. 본 논문에서는 이러한 신뢰성 문제를 해결하기 위하여 음소기반 인식 네트워크에서 필러 모델 방법과 단어 검출률 방법을 사용하여 실험하였고, 문장의 단어 수에 따른 두 방법의 문장 거부 성능을 FAR과 FRR의 평균을 최소화 하는 값을 각각 구함으로써 비교${\cdot}$분석 하였다. 그 결과 필러모델 방법이 좀 더 나은 거부 성능을 보였고, 단어 검출률을 이용하는 방법이 인식 네트워크를 전부 거치지 않아도 되므로 실행속도와 메모리 절약에서 효과적이었다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2021.06a
/
pp.307-310
/
2021
X-ray 영상 검사·검출 문제에 기존 딥러닝 모델을 사용하려는 시도들이 존재해왔고, 합성곱 신경망의 강력한 표현력 덕분에 대체로 준수한 성능이 보장되었다. 그러나 문제의 특성에 따라 기대한 만큼의 분류 및 검출 성능이 나오지 않는 경우가 존재한다. 이는 1) 검출 대상의 스케일이 다양하거나, 2) X-ray 영상은 흑백 영상으로 미세한 특징을 학습하기 어렵거나, 3) 지도학습을 하기에는 학습 데이터의 양이 부족하기 때문인 것이 주요 원인들이다. 본 논문에서는 다양한 스케일의 특징맵을 추출하여 종합적으로 학습하는 신경망을 통해, '생선살 X-ray 영상' 데이터셋에서 '생선 가시' 이물질 class가 모델 내에서 어떻게 학습되는지를 살펴본다. 그리고 X-ray 영상의 경우, 이물질 class를 크기별로 새롭게 labeling하여 성능 개선이 일어날 수 있음을 보인다. 또한 Multi-scale CAM을 통해 class에 따른 활성화 정도를 시각화하여 모델을 직관적으로 분석할 수 있음을 보일 것이다.
Proceedings of the Korean Society of Computer Information Conference
/
2021.01a
/
pp.69-70
/
2021
본 논문은 PPM으로 관리되고 있는 자동차 부품 제조 공정에서 검사자의 육안검사 방법을 대체하기 위해 머신비전 및 CNN 기반 불량 검출 시스템으로 제안되었던 방식들의 단점을 개선하기 위하여 기존 머신 비전 기술에 합성곱 오토인코더 모델을 적용하여 단점을 해결하였다. 본 논문에서 제시한 오토인코더를 이용하는 방법은 정상 생산품의 이미지만으로 학습을 진행하고, 학습된 모델은 불량 부위가 포함된 이미지를 입력받아 정상 이미지로 출력한다. 이 방법을 사용하여 불량의 부위와 크기를 알 수 있었으며 불량 여부의 판단은 임계치에 의한 불량 부위의 화소 수 계산으로 판단하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.