• Title/Summary/Keyword: 검출 모델

Search Result 1,728, Processing Time 0.041 seconds

Proactive safety support system for vulnerable pedestrians using Deep learning method (보행취약자 보행안전을 위한 딥러닝 응용 기법)

  • Song, Hyok;Ko, Min-Soo;Yoo, Jisang;Choi, Byeongho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.06a
    • /
    • pp.107-108
    • /
    • 2017
  • 횡단보도 인근에서는 보행취약자의 사고가 끊이지 않고 있으며 사고예방 및 사고의 절감을 위하여 선제적안 안전시스템의 개발이 요구되고 있다. 선제적 안전시스템의 개발을 위하여 빅데이터를 이용한 안전 데이터 도출, 영상분석을 이용한 보행자 행동특성 모니터링 시스템의 개발 및 사고감소를 위한 안전 시스템 개발이 진행되고 있다. 보행취약자 위험상황 판단에 대한 정의를 빅데이터 분석을 통해 도출하고 횡단보도 주변 안전 시스템의 개발을 기존 시스템에 적용 및 새로운 시스템을 개발하며 이에 적합한 딥러닝 영상분석 시스템을 개발하였다. 본 논문에서는 딥러닝 모델을 이용하여 객체의 검출, 분석을 수행하는 객체 검출부, 객체의 포즈와 행동을 보여주는 영상 분석부로 구성되어 있으며 기존 모델을 응용하여 최적화한 모델을 적용하였다. 딥러닝 모델의 구동은 리눅스 서버에서 운용되고 있으며 딥러닝 모델 구동을 위한 여러 툴을 적용하였다. 본 연구를 통하여 보행취약자의 검출, 추적, 보행취약자의 포즈 및 위험상황을 인식하고 안전시스템과 연계할 수 있도록 구성하였다.

  • PDF

Comparative Analysis of VT-ADL Model Performance Based on Variations in the Loss Function (Loss Function 변화에 따른 VT-ADL 모델 성능 비교 분석)

  • Namjung Kim;Changjoon Park;Junhwi Park;Jaehyun Lee;Jeonghwan Gwak
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.41-43
    • /
    • 2024
  • 본 연구에서는 Vision Transformer 기반의 Anomaly Detection and Localization (VT-ADL) 모델에 초점을 맞추고, 손실 함수의 변경이 MVTec 데이터셋에 대한 이상 검출 및 지역화 성능에 미치는 영향을 비교 분석한다. 기존의 손실 함수를 KL Divergence와 Log-Likelihood Loss의 조합인 VAE Loss로 대체하여, 성능 변화를 심층적으로 조사했다. 실험을 통해 VAE Loss로의 전환은 VT-ADL 모델의 이상 검출 능력을 현저히 향상시키며, 특히 PRO-score에서 기존 대비 약 5%의 개선을 보였다는 점을 확인하였다. 이러한 결과는 손실 함수의 최적화가 VT-ADL 모델의 전반적인 성능에 중요한 영향을 미칠 수 있음을 시사한다. 또한, 이 연구는 Vision Transformer 기반 모델의 이상 검출과 지역화 작업에 있어서 손실 함수 선택의 중요성을 강조하며, 향후 관련 연구에 유용한 기준을 제공할 수 있을 것으로 기대된다.

  • PDF

웨이브렛 변환에 의한 밀링공구의 파손검출

  • 김선호;박화영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.76-78
    • /
    • 1993
  • 간접적인 방법으로 가공중(In process)공구상태를 감시하기 위해, 센서신호를 분석하는 방법으로 시간영역 (Time Domain) 해석과 주파수 영역(Frequency Domain)해석이 주로 이용되어 왔다. 시간영역해석의 경우 RMS,PEak Value, 평균/분산을 이용한 정적분석과 AR 모델, ARMA 모델, Kalman Filter등 동적 시계열 모델이 연구되어 왔다. 주파수영역해석의 경우 푸리에 변환 (Fourier Transform)에 의한 신호해석 기술이 주로 이용되고 있다. 그러나 푸리에 변환된 결과에는 시간정보가 포함되어 있지 않고, 국부적인 변환결과가 전체를 대표하는 성질을 가지고 있다. 이에 비해 웨이브렛(Wavelet) 변환은 고주파성분에 대해서는 시간분해능이 높고, 저주파 성분에 대해서는 주파수분해능이 높은 다중해상도 해석기술로서 국소적인 변동점을 민검하게 검지하는 것이 가능하다. 본연구에서는 엔드밀 가공중 발생하는 공구의 파손을 검출하기 위해, 전류센서로 부터 얻은 이송축 부하 전류의 변화에 웨이브렛 변환을 통해 공구의 파손을 검출하는 방법에 대한 연구결과를 소개한다.

  • PDF

An Onset Detection Scheme for Vocal Queries Based on Dynamic Expansible MLP (동적 확장 가능한 다중 계층 신경망에 기반한 음성 질의의 onset 검출 기법)

  • Han, Byeong-Jun;Rho, Seung-Min;Hwang, Een-Jun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.422-426
    • /
    • 2007
  • 음성 질의에서 효율적으로 onset을 검출하기 위한 연구는 다양하게 이루어져 왔다. 특히 대부분의 연구는 확률론적 모델에서 큰 성과를 나타내고 있다. 그러나 이러한 모델들은 변화나 확장이 쉽지 않다는 단점을 가지고 있다. 본 논문에서는 동적 확장 가능한 다중 계층 신경망(Dynamic Expansible MLP)을 제안하여, 기존 방법론의 확장 가능성을 모색한다. 또한, 음성 질의의 onset을 검출하기 위해 MLP를 활용하기 위한 모델을 제시한다.

  • PDF

Fault Detection and Diagnosis of Dynamic Systems with Colored Measurement Noise (유색측정잡음을 갖는 동적 시스템의 고장검출 및 진단)

  • Kim, Bong-Seok;Kim, Kyung-Youn
    • Journal of IKEEE
    • /
    • v.6 no.1 s.10
    • /
    • pp.102-110
    • /
    • 2002
  • An effective scheme to detect and diagnose multiple failures in a dynamic system is described for the case where the measurement noise is correlated sequentially in time. It is based on the modified interacting multiple model (MIMM) estimation algorithm in which a generalized decorrelation process is developed by employing the autoregressive (AR) model for the colored noise and applying measurement difference method.

  • PDF

A Study on the Recognition-Rate Improvement by the Keyword Spotting System using CM Algorithm (CM 알고리즘을 이용한 핵심어 검출 시스템의 인식률 향상에 관한 연구)

  • Won Jong-Moon;Lee Jung-Suk;Kim Soon-Hyob
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.81-84
    • /
    • 2001
  • 본 논문은 중규모 단어급의 핵심어 검출 시스템에서 인식률 향상을 위해 미등록어 거절(Out-of-Vocabulary rejection) 기능을 제어하기 위한 연구이다. 이것은 핵심어 검출기에서 인식된 결과를 확인하는 과정으로 검증시스템이 구현되기 위해서는 매 음소마다 검증 기능이 필요하고, 이를 위해서 반음소(anti-phoneme model) 모델을 사용하였다. 검증의 역할은 인식기에서 인식된 단어가 등록어인지 미등록어인지 판별하는 것이다. 단어인식기는 비터비 탐색을 하므로, 기본적으로 단어단위로 인식을 하지만 그 인식된 단어는 내부적으로 음소단위로 인식된다. 따라서, 최소 검증 오류를 갖는 반음소 모델을 사용하고, 이를 이용하여 인식된 음소 단위들을 각각의 반음소 모델과 비교하여 통계적인 방법에 의해 신뢰도를 구한다 이 음소단위의 신뢰도를 단어 단위의 신뢰도로 환산하기 위해서 음소단위를 평균 내는 방식 을 취한다. 이렇게 함으로서, 등록어와 미등록어 사이의 분별력을 크게 하여 향상된 인식 성능을 얻었다.

  • PDF

Eye Tracking and synthesize for MPEG-4 Coding (MPEG-4 코딩을 위한 눈 추적과 애니메이션)

  • Park, Dong-Hee;Bae, Cheol-Soo;Na, Sang-Dong
    • Annual Conference of KIPS
    • /
    • 2002.04a
    • /
    • pp.741-744
    • /
    • 2002
  • 본 논문에서는 3D 모델의 눈 변형을 계산하기 위해 검출된 눈 형태를 이용한 눈 움직임 합성 방법을 제안하였다. 얼굴 특징들의 정확한 위치 측정과 추적은 MPEG-4 코딩 시스템을 기반으로 한 고품질 모델 개발에 중요하다. 매우 낮은 비트율의 영상회의 응용에서 시간의 경과에 따라 눈과 입술의 움직임을 정확히 추적하기 위해 얼굴 특징들의 정확한 위치 측정과 추적이 필요하다. 이들의 움직임은 코딩되어지고 원격지로 전송되어 질 수 있다. 애니메이션 기술은 얼굴 모델에서 움직임을 합성하는데 이용되어진다. 본 논문에서는 얼굴 특징 검출과 추적 알고리즘으로 잘 알려지고, 효과적으로 향상시킬 수 있는 휴리스틱 방법을 제안하겠다. 본 논문에서는 눈 움직임의 검출뿐만 아니라 추적, 모델링에도 초점을 두었다.

  • PDF

Performance Comparison of Filler Models and Word Spotting Ratio for Sentence Rejection in Phoneme-based Recognition Networks (문장 거부를 위한 음소기반 인식 네트워크에서의 필러 모델 비율과 단어 검출률의 성능비교)

  • Kim Hyung-Tai;Lee Byung-Hyuk;Ha Jin-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.856-858
    • /
    • 2005
  • 음성인식 시스템에서 입력된 음성 데이터에 대해 비인식 대상을 거부하는 기능은 신뢰도 보장 측면에 있어서 상당히 중요하며, 신뢰도를 높이기 위해서는 단순한 인식기능 외에 부적절한 입력 패턴의 거부 기능이 필요하다. 본 논문에서는 이러한 신뢰성 문제를 해결하기 위하여 음소기반 인식 네트워크에서 필러 모델 방법과 단어 검출률 방법을 사용하여 실험하였고, 문장의 단어 수에 따른 두 방법의 문장 거부 성능을 FAR과 FRR의 평균을 최소화 하는 값을 각각 구함으로써 비교${\cdot}$분석 하였다. 그 결과 필러모델 방법이 좀 더 나은 거부 성능을 보였고, 단어 검출률을 이용하는 방법이 인식 네트워크를 전부 거치지 않아도 되므로 실행속도와 메모리 절약에서 효과적이었다.

  • PDF

A Study on the Performance Improvement of X-ray Foreign Matter Classification Neural Networks Using Multi-scale CAM (Multi-scale CAM을 이용한 X-ray 이물질 분류 신경망 성능 향상에 대한 연구)

  • Lee, Sung Ju;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.307-310
    • /
    • 2021
  • X-ray 영상 검사·검출 문제에 기존 딥러닝 모델을 사용하려는 시도들이 존재해왔고, 합성곱 신경망의 강력한 표현력 덕분에 대체로 준수한 성능이 보장되었다. 그러나 문제의 특성에 따라 기대한 만큼의 분류 및 검출 성능이 나오지 않는 경우가 존재한다. 이는 1) 검출 대상의 스케일이 다양하거나, 2) X-ray 영상은 흑백 영상으로 미세한 특징을 학습하기 어렵거나, 3) 지도학습을 하기에는 학습 데이터의 양이 부족하기 때문인 것이 주요 원인들이다. 본 논문에서는 다양한 스케일의 특징맵을 추출하여 종합적으로 학습하는 신경망을 통해, '생선살 X-ray 영상' 데이터셋에서 '생선 가시' 이물질 class가 모델 내에서 어떻게 학습되는지를 살펴본다. 그리고 X-ray 영상의 경우, 이물질 class를 크기별로 새롭게 labeling하여 성능 개선이 일어날 수 있음을 보인다. 또한 Multi-scale CAM을 통해 class에 따른 활성화 정도를 시각화하여 모델을 직관적으로 분석할 수 있음을 보일 것이다.

  • PDF

Surface Defect Detection System for Steel Products using Convolutional Autoencoder and Image Calculation Methods (합성곱 오토인코더 모델과 이미지 연산 기법을 활용한 가공품 표면 불량 검출 시스템)

  • Kim, Sukchoo;Kwon, Jung Jang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.69-70
    • /
    • 2021
  • 본 논문은 PPM으로 관리되고 있는 자동차 부품 제조 공정에서 검사자의 육안검사 방법을 대체하기 위해 머신비전 및 CNN 기반 불량 검출 시스템으로 제안되었던 방식들의 단점을 개선하기 위하여 기존 머신 비전 기술에 합성곱 오토인코더 모델을 적용하여 단점을 해결하였다. 본 논문에서 제시한 오토인코더를 이용하는 방법은 정상 생산품의 이미지만으로 학습을 진행하고, 학습된 모델은 불량 부위가 포함된 이미지를 입력받아 정상 이미지로 출력한다. 이 방법을 사용하여 불량의 부위와 크기를 알 수 있었으며 불량 여부의 판단은 임계치에 의한 불량 부위의 화소 수 계산으로 판단하였다.

  • PDF