• Title/Summary/Keyword: 검출 모델

Search Result 1,728, Processing Time 0.028 seconds

Image-based 3D Face Modeling (영상기반 3차원 얼굴 모델링)

  • 민경필;전준철;박구락
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.169-171
    • /
    • 2003
  • 현실감 있는 얼굴 모델을 생성하기 위한 방법은 70년대부터 계속되었지만, 얼굴 구조의 복잡성, 색상과 텍스처의 다양한 분포, 잔주름과 같은 미세한 부분을 표현하기 어렵다는 정들로 인해 아직까지도 계속 연구되어지고 있다. 본 논문은 기존의 하드웨어 의존적인 3차원 얼굴 모델을 생성 방법이 아닌 2차원 얼굴 영상만으로 얼굴 모델을 생성하는 방법을 제시한다. 연구 수행 단계는 크게 얼굴 영역 검출 과정과 얼굴 모델링 과정으로 나뉘어지며, 얼굴 영역 검출을 위해 정규화된 TS 색상값과 얼굴의 피부색에 대한 평균과 공분산을 이용한 마할라노비스 거리 측정법을 이용한다. 얼굴 모델링 과정에서는 2차원 영상으로부터 3차원 정보를 추출한 뒤 일반 얼굴 모델에 변형을 주어 모델을 생성한다. 보다 현실감 있는 모델을 생성하기 위해 텍스쳐 매핑 기법을 추가한다. 본 연구를 통해 생성되는 얼굴 모델은 아바타 생성, 화상회의, 인증 시스템과 같은 분야에 적용 가능하며, 입력 영상에 대한 제약점을 줄이고 또한 사람의 손이 거치지 않고 전체적으로 자동화되어 처리할 수 있는 시스템을 제안한다.

  • PDF

The improved image filter for the purpose of controlling the image energy in the Active Contour Model (활성 윤곽선 모델의 영상 에너지 제어를 위한 개선된 영상 필터)

  • 강중욱;최경민;박용희;전병호;김태균
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.520-522
    • /
    • 1998
  • 활성 윤곽선 모델(Active Contour Model : Snake)을 이용한 윤곽선 추출 방법에서는 물체를 검출하기 위해 잠재적 표면(potential surface) 위에서 지역 최소치를 향하여 다양한 힘을 가함으로써 물체의 윤곽선으로 활성 윤곽선 모델을 움직이게 한다. 활성 윤곽선 모델에서 영상의 관심있는 물체를 검출하기 위해서는 영상의 잠재적 표면 위에서 활성 윤곽선 모델이 지역 최소치를 향하여 활동적으로 움직이도록 다양한 힘을 효과적으로 제어해야 한다. 본 논문에서는 활성 윤곽선 모델이 적합한 지역 최소치를 향하여 적절하게 수렴하도록 활성 윤곽선 모델이 움직이는 잠재적 표면을 변형할 수 있는 영상 필터를 제안한다.

  • PDF

Object detection model conversion and weight reduction for efficient operation in embedded environment (임베디드 환경에서 효율적인 동작을 위한 객체검출 모델 변환 및 경량화)

  • Choi, In-Kyu;Song, Hyuk
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.244-245
    • /
    • 2022
  • 최근에는 우수한 성능의 딥러닝 기술을 활용한 장비와 프로그램이 개발되고 있으나 기술의 특성상 모든 환경에서 우수한 성능을 보여주지 못하고 고 사양의 서버와 같은 환경에서의 성능만을 보장하고 있다. 따라서 이에 대한 개선으로 엣지 디바이스 독립적으로 혹은 클라우드 의존과 인터넷 연결을 최소화 할 수 있는 엣지 컴퓨팅 기술이 제안되고 있으며 경량 내장형 시스템에 적합한 인공지능 기술의 개발이 필요하다. 본 논문에서는 객체검출 모델을 적은 연산과 효율적인 구조로 설계하고 생성된 모델을 임베디드 보드에서 원활하게 실행할 수 있도록 중립 모델로 변환하고 경량화 하는 방법에 대해 소개한다. Qualcomm snapdragon 프로세서가 갖춰진 임베디드 보드를 목표로 하였고 편의를 위해 SNPE(snapdragon neural processing engine) SDK를 이용하여 실험을 진행하였다. 실험 결과 변환된 중립모델이 기존 모델과 비교하여 압축된 모델 크기 대비 미미한 성능 저하가 발생함을 확인할 수 있었다.

  • PDF

Sensor Fault Detection for Small Turboshaft Engine Considering Multiple Trim Conditions (다중 트림 상태를 고려한 소형 터보샤프트 엔진의 센서 고장 검출)

  • Seong, Sang-Man;Rhee, Ihn-Seok;Ryu, Hyeok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.192-195
    • /
    • 2008
  • A sensor fault detection method for small turbo shaft engine considering multiple trim conditions is proposed. This engine is used in a helicopter. Firstly, under multiple trim conditions, we derive the linearized models from a nonlinear model which includes engine, rotor and feedback control loop. As a fault detection method, we adopt the Kalman filter based method. To keep continuity of estimates between the changes of trim conditions, we reconfigure the initial values of state variables at trim changes. We detect the faults with two steps that when the first filter does not alarm the faults for some sensors, the second filter is runned for other sensor. Via some simulations we show that the proposed method works well under multiple trim conditions.

  • PDF

정성적 시뮬레이션에 의한 화력발전소 보일러 프로세스의 고장진단

  • 김응석;오영일;변승현
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.10a
    • /
    • pp.169-169
    • /
    • 1999
  • 최근 산업 플랜트의 공정제어 시스템은 복잡하고 대규모화되어 고장 발생시 경제적 손실과 위험성이 증폭되어 규정된 안정서와 신뢰성 확보가 필수적이라 할 수 있다. 고장검출 및 진단기법은 시스템의 신뢰성을 높이기 위한 효과적인 방안을 연구하는 것으로 현대에 들어서 많은 학자들의 관심을 끌고 있으며 실제 계통에 점차적으로 응용되고 있다. 현재까지 개발된 고장검출 및 진단기법은 사용된 프로세스 모델의 형태, 고장검출 진단 알고리즘에 따라 다양하게 분류 될 수 있으며 일반적으로 사용된 모델에 따라 크게 1) 정량적 모델에 근거한 해석적 기법, 2) 정성적 모델에 근거한 기법, 3) 지식기반 진단 기법으로 구분 할 수 있다. 이중 정량적 모델 기법은 대상계통의 수학적 모델에 근거하여 운전 데이터를 분석함으로서 고장검출 진단을 수행하는 해석적 기법으로서 근본적으로 계통의 정확한 수학적 모델을 요구하므로 불확실성을 포함한 계통 및 비선형성이 강한 계통등에는 적용이 곤란하다. 정성적 모델 및 지식기반 기법은 정량적 진단 기법과는 달리 대상 프로세스에 대한 수학적 모델 대신에 운전자의 경험과 프로세스 변수간의 상호 작용 및 고장의 전파과정, 고장원인과 증상과의 직접적인 관계에 대한 구조적 지식에 근거한 것으로 고장원인에 대한 계통의 동작을 추론 할 수 있으며, 상황 변화에 따른 영향을 예측할 수 있다. 본 논문에서는 정성적 모델 및 지식기반 기법에 근거한 고장검출 및 진단 기술을 화력 발전소 보일로 프로세스에 적용하여 정성적 시뮬레이션에 의한 설비의 고장을 조기에 발견하여 고장 파급으로 인한 발전 정지 및 설비의 손상 확대를 방지하고 고장 발생시 신속한 원인 규명 및 후속 조치관련 정보들을 운전원에게 제공할 목적으로 현재 전력원에서 개발중인 지능형 경보시스템에 대하여 기술하고자 한다.음과 같이 설명하였다. 서로 상반되는 것들이 다음과 같이 설명하였다. 서로 상반되는 것들이 부딛힘이 없이 공존하고 일상의 논리가 무시된다. 부정, 의심이 없고 확실한 것이 없다. 한 대상에 가졌던 생각이 다른 대상에 옮겨간다(displacement). 한 대상이 여러 대상이 갖고 있는 의미를 함축하고 있다(condensation). 시각적인 순서가 무시된다. 마음속의 생각과 외부의 실제적인 일을 구분하지 못한다. 시간 상의 순서가 있다가 없다가 한다. 차례로 일어나야 할 일이 동시에 한꺼번에 일어난다. 대상들이 서로 비슷해지고 동시에 있을 수 없는 대상들이 함께 나타난다. 사고의 정상적인 구조가 와해된다. Matte-Blance는 무의식에서는 여러 독립된 대상들간의 구분을 없애며, 주체와 객체를 하나로 보려는 대칭화(symmetrization)의 경향이 있기 때문에 이런 변화가 생긴다고 하였다. 또 대칭화가 진행되면 무한대의 느낌을 갖게 되어, 전지(moniscience), 전능(omnipotence), 무력감(impotence), 이상화(idealization)가 나타난다. 그러나 무의식에 대칭화만 있는 것은 아니며, 의식의 사고양식인 비대칭도 어느 정도 나타나며, 대칭화의 정도에 따라, 대상들이 잘 구분되어 있는 단계, 의식수준의 감정단계, 집단 내에서의 대칭화 단계, 집단간에서의 대칭화 단계, 구분이 없어지는 단계로 구분하였다.systems. We believe that this taxonomy is a significant contribution because it adds clarity, completeness, and "global perspective" to workflow architectural discussions. The vocabulary suggested here

  • PDF

Research on Pothole Detection using Feature-Level Ensemble of Pretrained Deep Learning Models (사전 학습된 딥러닝 모델들의 피처 레벨 앙상블을 이용한 포트홀 검출 기법 연구)

  • Ye-Eun Shin;Inki Kim;Beomjun Kim;Younghoon Jeon;Jeonghwan Gwak
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.35-38
    • /
    • 2023
  • 포트홀은 주행하는 자동차와 접촉이 이뤄지면 차체나 운전자에게 충격을 주고 제어를 잃게 하여 도로 위 안전을 위협할 수 있다. 포트홀의 검출을 위한 국내 동향으로는 진동을 이용한 방식과 신고시스템 이용한 방식과 영상 인식을 기반한 방식이 있다. 이 중 영상 인식 기반 방식은 보급이 쉽고 비용이 저렴하나, 컴퓨터 비전 알고리즘은 영상의 품질에 따라 정확도가 달라지는 문제가 있었다. 이를 보완하기 위해 영상 인식 기반의 딥러닝 모델을 사용한다. 따라서, 본 논문에서는 사전 학습된 딥러닝 모델의 정확도 향상을 위한 Feature Level Ensemble 기법을 제안한다. 제안된 기법은 사전 학습된 CNN 모델 중 Test 데이터의 정확도 기준 Top-3 모델을 선정하여 각 딥러닝 모델의 Feature Map을 Concatenate하고 이를 Fully-Connected(FC) Layer로 입력하여 구현한다. Feature Level Ensemble 기법이 적용된 딥러닝 모델은 평균 대비 3.76%의 정확도 향상을 보였으며, Top-1 모델인 ShuffleNet보다 0.94%의 정확도 향상을 보였다. 결론적으로 본 논문에서 제안된 기법은 사전 학습된 모델들을 이용하여 각 모델의 다양한 특징을 통해 기존 모델 대비 정확도의 향상을 이룰 수 있었다.

  • PDF

Detection of Heartbeat and Respiration Using a Modified Signal Model in the CW Bio-Radar (CW 바이오 레이더에서 수정 송수신 모델을 이용한 심장 박동 및 호흡 검출)

  • Seo, Myung-Hwan;Lee, Byung-Seub
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.11
    • /
    • pp.1204-1212
    • /
    • 2008
  • The paper proposes a new signal model which is revised from the commonly used signal model. Recently, many research institutions had a research about CW bio-radar for detecting he heartbeat and respiration. However, when the bio-radar detects the heartbeat using the previous signal model, the bio-radar has a disadvantage of weakness about he residual phase and AWGN. Also, the model is inappropriate in ergonomics because this signal model supposes hat the heart and lung are located at a same place. In this paper, the modified signal model, which is appropriate n ergonomics, is proposed. This paper analyzes and compares with the performance for detecting the heartbeat and respiration using the previous model and revised model in AWGN and multi-path environment.

Fast Pedestrian Detection Using Estimation of Feature Information Based on Integral Image (적분영상 기반 특징 정보 예측을 통한 고속 보행자 검출)

  • Kim, Jae-Do;Han, Young-Joon
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.469-477
    • /
    • 2013
  • This paper enhances the speed of a pedestrian detection using an estimation of feature information based on integral image. Pedestrian model or input image should be resized to the size of various pedestrians. In case that the size of pedestrian model would be changed, pedestrian models with respect to the size of pedestrians should be required. Reducing the size of pedestrian model, however, deteriorates the quality of the model information. Since various features according to the size of pedestrian models should be extracted, repetitive feature extractions spend the most time in overall process of pedestrian detection. In order to enhance the processing time of feature extraction, this paper proposes the fast extraction of pedestrian features based on the estimate of integral image. The efficiency of the proposed method is evaluated by comparative experiments with the Channel Feature and Adaboost training using INRIA person dataset.

Performance Improvement of Mean-Teacher Models in Audio Event Detection Using Derivative Features (차분 특징을 이용한 평균-교사 모델의 음향 이벤트 검출 성능 향상)

  • Kwak, Jin-Yeol;Chung, Yong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.401-406
    • /
    • 2021
  • Recently, mean-teacher models based on convolutional recurrent neural networks are popularly used in audio event detection. The mean-teacher model is an architecture that consists of two parallel CRNNs and it is possible to train them effectively on the weakly-labelled and unlabeled audio data by using the consistency learning metric at the output of the two neural networks. In this study, we tried to improve the performance of the mean-teacher model by using additional derivative features of the log-mel spectrum. In the audio event detection experiments using the training and test data from the Task 4 of the DCASE 2018/2019 Challenges, we could obtain maximally a 8.1% relative decrease in the ER(Error Rate) in the mean-teacher model using proposed derivative features.

Performance Evaluation of YOLOv5 Model according to Various Hyper-parameters in Nuclear Medicine Phantom Images (핵의학 팬텀 영상에서 초매개변수 변화에 따른 YOLOv5 모델의 성능평가)

  • Min-Gwan Lee;Chanrok Park
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.1
    • /
    • pp.21-26
    • /
    • 2024
  • The one of the famous deep learning models for object detection task is you only look once version 5 (YOLOv5) framework based on the one stage architecture. In addition, YOLOv5 model indicated high performance for accurate lesion detection using the bottleneck CSP layer and skip connection function. The purpose of this study was to evaluate the performance of YOLOv5 framework according to various hyperparameters in position emission tomogrpahy (PET) phantom images. The dataset was obtained from QIN PET segmentation challenge in 500 slices. We set the bounding box to generate ground truth dataset using labelImg software. The hyperparameters for network train were applied by changing optimization function (SDG, Adam, and AdamW), activation function (SiLU, LeakyRelu, Mish, and Hardwish), and YOLOv5 model size (nano, small, large, and xlarge). The intersection over union (IOU) method was used for performance evaluation. As a results, the condition of outstanding performance is to apply AdamW, Hardwish, and nano size for optimization function, activation function and model version, respectively. In conclusion, we confirmed the usefulness of YOLOv5 network for object detection performance in nuclear medicine images.