• Title/Summary/Keyword: 검출 모델

Search Result 1,728, Processing Time 0.035 seconds

A New EGG System Design and Speech Analysis for Quantitative Analysis of Human Glottal Vibration Patterns (성문진동 패턴의 정량적인 해석을 위한 새로운 시스템 설계와 음성분석)

  • 김종찬;이재천;김덕원;오명환;윤대희;차일환
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.427-433
    • /
    • 1999
  • The purpose of the study is to develop an improved pitch extraction method that can be used in a variety of speech applications such as high-puality compression and vocoding, and recognition and synthesis of speech. To do so, we develop a new electroglottograph (EGG) measurement system that is based on the four modulation-demodulation type spot electrodes for detecting the EGG signals. Then, the glottal closure instant(GCI) is determined from the EGG signals on a real-time basis. We can obtain the pitch contour using the information on the GCI. It turns out that the new pitch contour algorithm (PCA) operates more reliably as compared to the conventional speech-only-based algorithm. In addition, we study the speech source models and glottal vibratory patterns for Koreans by measuring and analyzing the diversified vibration patterns of the vocal from the EGG signals.

  • PDF

DCT-based Digital Dropout Detection using SVM (SVM을 이용한 DCT 기반의 디지털 드롭아웃 검출)

  • Song, Gihun;Ryu, Byungyong;Kim, Jaemyun;Ahn, Kiok;Chae, Oksam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.190-200
    • /
    • 2014
  • The video-based system of the broadcasters and the video-related institutions have shifted from analogical to digital in worldwide. This migration process can generate a defect, digital dropout, in the quality of the contents. Moreover, there are limited researches focused on these kind of defects and those related have limitations. For that reason, we are proposing a new method for feature extraction emphasizing in the peculiar block pattern of digital dropout based on discrete cosine transform (DCT). For classification of error block, we utilize support vector machine (SVM) which can manage feature vectors efficiently. Further, the proposed method overcome the limitation of the previous one using continuity of frame by frame. It is using only the information of a single frame and works better even in the presence of fast moving objects, without the necessity of specific model or parameter estimation. Therefore, this approach is capable of detecting digital dropout only with minimal complexity.

Hardware Implementation of Moving Picture Retrieval System Using Scene Change Technique (장면 전환 기법을 이용한 동영상 검색 시스템의 하드웨어 구현)

  • Kim, Jang-Hui;Kang, Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.3
    • /
    • pp.30-36
    • /
    • 2008
  • The multimedia that is characterized by multi-media, multi-features, multi-representations, huge volume, and varieties, is rapidly spreading out due to the increasing of application domains. Thus, it is urgently needed to develop a multimedia information system that can retrieve the needed information rapidly and accurately from the huge amount of multimedia data. For the content-based retrieval of moving picture, picture information is generally used. It is generally used when video is segmented. Through that, it can be a structural video browsing. The tasking that divides video to shot is called video segmentation, and detecting the cut for video segmentation is called cut detection. The goal of this paper is to divide moving picture using HMMD(Hue-Mar-Min-Diff) color model and edge histogram descriptor among the MPEG-7 visual descriptors. HMMD color model is more familiar to human's perception than the other color spaces. Finally, the proposed retrieval system is implemented as hardware.

Automatic Facial Expression Recognition using Tree Structures for Human Computer Interaction (HCI를 위한 트리 구조 기반의 자동 얼굴 표정 인식)

  • Shin, Yun-Hee;Ju, Jin-Sun;Kim, Eun-Yi;Kurata, Takeshi;Jain, Anil K.;Park, Se-Hyun;Jung, Kee-Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.3
    • /
    • pp.60-68
    • /
    • 2007
  • In this paper, we propose an automatic facial expressions recognition system to analyze facial expressions (happiness, disgust, surprise and neutral) using tree structures based on heuristic rules. The facial region is first obtained using skin-color model and connected-component analysis (CCs). Thereafter the origins of user's eyes are localized using neural network (NN)-based texture classifier, then the facial features using some heuristics are localized. After detection of facial features, the facial expression recognition are performed using decision tree. To assess the validity of the proposed system, we tested the proposed system using 180 facial image in the MMI, JAFFE, VAK DB. The results show that our system have the accuracy of 93%.

  • PDF

Target Speech Detection Using Gaussian Mixture Model of Frequency Bandwise Power Ratio for GSC-Based Beamforming (GSC 기반 빔포밍을 위한 주파수 밴드별 전력비 분포의 혼합 가우시안 모델을 이용한 목표 음성신호의 검출)

  • Chang, Hyungwook;Kim, Youngil;Jeong, Sangbae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.61-68
    • /
    • 2015
  • Noise reduction is necessary to compensate for the degradation of recognition performance by various types of noises. Among many noise reduction techniques using microphone array, generalized sidelobe canceller (GSC) has been widely applied to reduce nonstationary noises. The performance of GSC is directly affected by its adaptation mode controller (AMC). That is, accurate target speech detection is essential to guarantee the sufficient noise reduction in pure noise intervals and the less distortion in target speech intervals. Thus, this paper proposes an improved AMC design technique in which the power ratio of the output of fixed beamforming to that of blocking matrix is calculated frequency bandwise and probabilistically modeled by mixture Gaussians for each class. Experimental results show that the proposed algorithm outperforms conventional AMCs in receiver operating curves (ROC) and output SNRs.

Hand shape recognition based on geometric feature using the convex-hull (Convex-hull을 이용한 기하학적 특징 기반의 손 모양 인식 기법)

  • Choi, In-Kyu;Yoo, Jisang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.1931-1940
    • /
    • 2014
  • In this paper, we propose a new hand shape recognition algorithm based on the geometric features using the convex-hull from the depth image acquired by Kinect system. Kinect is a camera providing a depth image and user's skeleton information and used for detecting hand region. In the proposed algorithm, hand region is detected in a depth image acquired by Kinect and convex-hull of the region is found. Boundary points caused by noise and unnecessary points for recognition are eliminated in the convex-hull that changes depending on hand shape. Hand shape is recognized by the sum of internal angle of a polygon that is matched with convex-hull reconstructed with selected boundary points. Through experiments, we confirm that proposed algorithm shows high recognition rate not only for five models but also those cases rotated.

The improved facial expression recognition algorithm for detecting abnormal symptoms in infants and young children (영유아 이상징후 감지를 위한 표정 인식 알고리즘 개선)

  • Kim, Yun-Su;Lee, Su-In;Seok, Jong-Won
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.430-436
    • /
    • 2021
  • The non-contact body temperature measurement system is one of the key factors, which is manage febrile diseases in mass facilities using optical and thermal imaging cameras. Conventional systems can only be used for simple body temperature measurement in the face area, because it is used only a deep learning-based face detection algorithm. So, there is a limit to detecting abnormal symptoms of the infants and young children, who have difficulty expressing their opinions. This paper proposes an improved facial expression recognition algorithm for detecting abnormal symptoms in infants and young children. The proposed method uses an object detection model to detect infants and young children in an image, then It acquires the coordinates of the eyes, nose, and mouth, which are key elements of facial expression recognition. Finally, facial expression recognition is performed by applying a selective sharpening filter based on the obtained coordinates. According to the experimental results, the proposed algorithm improved by 2.52%, 1.12%, and 2.29%, respectively, for the three expressions of neutral, happy, and sad in the UTK dataset.

An Overview of Fault Diagnosis and Fault Tolerant Control Technologies for Industrial Systems (산업 시스템을 위한 고장 진단 및 고장 허용 제어 기술)

  • Bae, Junhyung
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.548-555
    • /
    • 2021
  • This paper outlines the basic concepts, approaches and research trends of fault diagnosis and fault tolerant control applied to industrial processes, facilities, and motor drives. The main role of fault diagnosis for industrial processes is to create effective indicators to determine the defect status of the process and then take appropriate measures against failures or hazadous accidents. The technologies of fault detection and diagnosis have been developed to determine whether a process has a trend or pattern, or whether a particular process variable is functioning normally. Firstly, data-driven based and model-based techniques were described. Secondly, fault detection and diagnosis techniques for industrial processes are described. Thirdly, passive and active fault tolerant control techniques are considered. Finally, major faults occurring in AC motor drives were listed, described their characteristics and fault diagnosis and fault tolerant control techniques are outlined for this purpose.

Application Research on Obstruction Area Detection of Building Wall using R-CNN Technique (R-CNN 기법을 이용한 건물 벽 폐색영역 추출 적용 연구)

  • Kim, Hye Jin;Lee, Jeong Min;Bae, Kyoung Ho;Eo, Yang Dam
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.2
    • /
    • pp.213-225
    • /
    • 2018
  • For constructing three-dimensional (3D) spatial information occlusion region problem arises in the process of taking the texture of the building. In order to solve this problem, it is necessary to investigate the automation method to automatically recognize the occlusion region, issue it, and automatically complement the texture. In fact there are occasions when it is possible to generate a very large number of structures and occlusion, so alternatives to overcome are being considered. In this study, we attempt to apply an approach to automatically create an occlusion region based on learning by patterning the blocked region using the recently emerging deep learning algorithm. Experiment to see the performance automatic detection of people, banners, vehicles, and traffic lights that cause occlusion in building walls using two advanced algorithms of Convolutional Neural Network (CNN) technique, Faster Region-based Convolutional Neural Network (R-CNN) and Mask R-CNN. And the results of the automatic detection by learning the banners in the pre-learned model of the Mask R-CNN method were found to be excellent.

Feature Extraction based on Auto Regressive Modeling and an Premature Contraction Arrhythmia Classification using Support Vector Machine (Auto Regressive모델링 기반의 특징점 추출과 Support Vector Machine을 통한 조기수축 부정맥 분류)

  • Cho, Ik-sung;Kwon, Hyeog-soong;Kim, Joo-man;Kim, Seon-jong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.2
    • /
    • pp.117-126
    • /
    • 2019
  • Legacy study for detecting arrhythmia have mostly used nonlinear method to increase classification accuracy. Most methods are complex to process and manipulate data and have difficulties in classifying various arrhythmias. Therefore it is necessary to classify various arrhythmia based on short-term data. In this study, we propose a feature extraction based on auto regressive modeling and an premature contraction arrhythmia classification method using SVM., For this purpose, the R-wave is detected in the ECG signal from which noise has been removed, QRS and RR interval segment is modelled. Also, we classified Normal, PVC, PAC through SVM in realtime by extracting four optimal segment length and AR order. The detection and classification rate of R wave and PVC is evaluated through MIT-BIH arrhythmia database. The performance results indicate the average of 99.77% in R wave detection and 99.23%, 97.28%, 96.62% in Normal, PVC, PAC classification.