Journal of the Korea Society of Computer and Information
/
v.7
no.3
/
pp.36-41
/
2002
This study was carried out develope a ultrasonic transducer displacement generator through 26KHz and 38KHz of the frequency phase modulation on the ultrasonic transducer. This system was producted a power output generation such as 100W, 300W, 400W and 600W. Ultrasonic power output had a change of time. We made use of a Thiram hydration and detected it measurement by the ACAO method. It was to decide the result of ultrasonic power supply for time duration and the result of comparison in the 26KHz & 38KHz by UV/VIS spectrophotometer.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2018.11a
/
pp.90-92
/
2018
본 논문에서는 입력 영상을 카메라의 자세 정보에 따라 적절히 와핑한 후 이들을 심(Seam)을 따라 이어붙인 360VR 에서 갑작스런 객체 출현에 의해 중첩 영역에서 발생하는 왜곡 문제를 해결할 방법을 제안한다. 임의의 객체가 나타났을 때, 객체의 윤곽선을 반영하여 심(Seam)을 재설정함으로써 객체가 우그러지거나, 잘려나가는 등의 왜곡 문제를 해결한다. 이를 위해 본 논문에서는 가우시안(Gaussian) 혼합 모델 기반 전경/배경분리에 의한 움직이는 객체 추출, 객체 윤곽선 검출, 윤곽선에 기반한 심(Seam) 조정, 새로운 심(Seam) 기반 스티칭으로 왜곡을 없애는 방법을 제안하였다. 그리고 이를 실제 촬영 영상에 적용하여 왜곡 개선 효과를 보였다.
When we inspect scaffold defect using sight, inspecting performance is decrease and inspecting time is increase. We need for automatically scaffold defect detection method to increase detection accuracy and reduce detection times. In this paper. We produced scaffold defect classification models using densenet, alexnet, vggnet algorithms based on CNN. We photographed scaffold using multi dimension camera. We learned scaffold defect classification model using photographed scaffold images. We evaluated the scaffold defect classification accuracy of each models. As result of evaluation, the defect classification performance using densenet algorithm was at 99.1%. The defect classification performance using VGGnet algorithm was at 98.3%. The defect classification performance using Alexnet algorithm was at 96.8%. We were able to quantitatively compare defect classification performance of three type algorithms based on CNN.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.11a
/
pp.211-213
/
2022
Lip Reading(독순술(讀脣術)) 이란 입술의 움직임을 보고 상대방이 무슨 말을 하는지 알아내는 기술이다. 본 논문에서는 MBC, SBS 뉴스 클로징 영상에서 쓰이는 문장 10개를 데이터로 사용하고 CNN(Convolutional Neural Network) 아키텍처 중 모바일 기기에서 동작을 목표로 한 MobileNet을 모델로 이용하여 발화자의 입모양을 통해 문장 인식 연구를 진행한 결과를 제시한다. 본 연구는 MobileNet과 LSTM을 활용하여 한국어 입모양을 인식하는데 목적이 있다. 본 연구에서는 뉴스 클로징 영상을 프레임 단위로 잘라 실험 문장 10개를 수집하여 데이터셋(Dataset)을 만들고 발화한 입력 영상으로부터 입술 인식과 검출을 한 후, 전처리 과정을 수행한다. 이후 MobileNet과 LSTM을 이용하여 뉴스 클로징 문장을 발화하는 입모양을 학습 시킨 후 정확도를 알아보는 실험을 진행하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.11a
/
pp.72-75
/
2022
야외 환경을 카메라로 촬영한 일반 영상에서 텍스트 이미지를 검출하고 인식하는 기술은 로봇 비전, 시각 보조 등의 기반이 되는 기술로 활용될 수 있어 매우 중요한 기술이다. 하지만 저해상도의 텍스트 이미지의 경우 텍스트 이미지에 포함된 노이즈나블러 등이 더 두드러지기 때문에 텍스트 내용을 인식하는 것이 어렵다. 이에 본 논문은 일반 영상에서의 저해상도 한글 및 영어 텍스트에 대한 이미지 초해상화를 통해 텍스트 인식 정확도를 개선하였다. 트랜스포머에 기반한 모델로 한글 및 영어 텍스트에 대한 이미지 초해상화를 수행하였으며, 영어 및 한글 데이터셋에 대해 제안한 초해상화 방법을 적용했을 때 그렇지 않을 때보다 텍스트 인식 성능이 개선되는 것을 확인하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
fall
/
pp.180-182
/
2021
본 논문에서는 드론의 비행 장소와 온도 및 습도에 영향을 받지 않는 적외선 기반 깊이 카메라로부터 얻어진 깊이영상을 분석하여 지면 영역을 찾고 AGL(Above Ground Level) 단위의 고도를 측정하는 방법을 제안한다. Decimation filter 와 Median filter 를 적용하여 잡음 및 빈 데이터들을 제거한 깊이영상으로부터 RANSAC (RANdom Sample Consensus) 기반 평면 모델 추정 방법을 이용하여 지면 영역과 이에 대한 평면의 방정식을 유추하고 현재 위치와의 거리를 계산한다. 성능 평가를 위해 Lidar 센서와 비교한 결과, 제안 방법이 지면에 위치한 장애물에 영향을 더 적게 받으며, 자세 정보와 독립적으로 고도를 측정할 수 있었다.
Proceedings of the Korean Institute of Building Construction Conference
/
2022.04a
/
pp.73-74
/
2022
Concrete structures occupy the largest proportion of modern infrastructure, and concrete structures often have cracking problems. Existing concrete crack diagnosis methods have limitations in crack evaluation because they rely on expert visual inspection. Therefore, in this study, we design a deep learning model that detects, visualizes, and outputs cracks on the surface of RC structures based on image data by using a CNN (Convolution Neural Networks) model that can process two- and three-dimensional data such as video and image data. do. An experimental study was conducted on an algorithm to automatically detect concrete cracks and visualize them using a CNN model. For the three deep learning models used for algorithm learning in this study, the concrete crack prediction accuracy satisfies 90%, and in particular, the 'InceptionV3'-based CNN model showed the highest accuracy. In the case of the crack detection visualization model, it showed high crack detection prediction accuracy of more than 95% on average for data with crack width of 0.2 mm or more.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.305-308
/
2020
임플란트 시술 수요가 늘고 시장이 성장하면서 관련 기술도 발전하고 있다. 특히 기능성과 심미성 향상을 위해 많은 기술이 연구되고 있다. 이 중 심미성에 있어 주변 치아와의 색 유사도가 높은 임플란트를 제작하는 것이 주요 연구 중 하나이다. 본 논문에서는 심미성 높은 임플란트 제작을 위해, 다음과 같은 임플란트 표본 추천 시스템을 제안한다. 휴대 조명 장치와 의료용 치아 패치를 사용한 색 보정으로 촬영 환경 차이를 최소화하여 치아의 정확한 색을 추출한다. Mask R-CNN 모델을 통해 보정된 영상에서 치아를 검출하고, 군집화를 통해 색상 단위로 치아 영역을 구분한다. 치아의 영역별 색상과 임플란트 표본 사이의 색상 거리를 계산하여 유사한 표본들을 추천한다. 위 시스템을 통해 사용자는 주변 환경에 영향을 받지 않고, 치아의 색을 정확히 분석하여 이를 임플란트 표본과 비교할 수 있게 된다.
Proceedings of the Korean Society of Computer Information Conference
/
2021.07a
/
pp.363-366
/
2021
본 연구에서는 콘크리트의 균열을 추출하여 추출한 균열을 분석하고 시각화하여 나타내는 방법을 제안한다. 추출한 균열을 분석하여 길이, 넓이, 평균 폭 등의 주요 지표를 측정하여 균열 부위에 대한 세부 정보를 파악할 수 있게 하였다. 특히 균열 분석 과정에서 기존의 균열 중심부와 에지 간의 직선 최단 거리 계산을 통한 균열 폭 측정 방식이 아닌 내접원 탐색 방식을 적용하여 다각형의 균열에 대한 폭 측정 방식을 제안하고 있다. 또한 분석 결과를 Wavefront 3D OBJ 모델과 CAD 파일로 생성하였고, 이를 웹 브라우저를 통해 입체적으로 볼 수 있도록 시각화 하였다.
Proceedings of the Korean Society of Computer Information Conference
/
2021.07a
/
pp.97-98
/
2021
학습에 대한 적극적인 참여는 학업에서 중요한 행동이며 높은 학업 참여는 성공적인 학업성취와 밀접한 관계가 있다. 학업 참여는 학자들의 관점에 따라 행동적 참여, 정서적 참여, 인지적 참여로 구분된다. 행동적 참여는 학생들이 실제 학습활동과 과제 수행에 어떻게 참여하는가로 정의한다. 그러나 온라인 학습 환경에서는 학생들의 학습활동을 평가하는 데 어려움이 존재하여 관련된 연구의 필요성이 대두되고 있다. 본 논문에서는 영상 분석을 이용한 양방향 Convolutional LSTM 모델을 기반으로 온라인 수업 상에서 학습활동 중 하나인 손들기 행동을 인식하는 방법을 제안한다. 제안된 방법으로 학습활동 중 하나인 손들기 행동의 인식 정확도는 88%이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.