• Title/Summary/Keyword: 검증 소프트웨어

Search Result 2,336, Processing Time 0.03 seconds

3D Architecture Modeling and Quantity Estimation using SketchUp (스케치업을 활용한 3D 건축모델링 및 물량산출)

  • Kim, Min Gyu;Um, Dae Yong
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.701-708
    • /
    • 2017
  • The construction cost is estimated based on the drawings at the design stage and constructor will find efficient construction methods for budgeting and budgeting appropriate to the budget. Accurate quantity estimation and budgeting are critical to determining whether the project is profitable or not. However, since this process is mostly performed depending on manpower or 2D drawings, errors are likely to occur and The BIM(Build Information Modeling) program, which can be automated, is very expensive and difficult to apply in the field. In this study, 3D architectural modeling was performed using SketchUp which is a 3D modeling software and suggest a methodology for Quantity Estimation. As a result, 3D modeling was performed effectively using 2D drawings of buildings. Based on the modeling results, it was possible to calculate the difference of the quantity estimation by 2D drawing and 3D modeling. The research suggests that the 3D modeling using the SketchUp and the calculation of the quantity can prevent the error of the conventional 2D calculation method. If the applicability of the research method is verified through continuous research, it will contribute to increase the efficiency of architectural modeling and quantity Estimation work.

Heterogeneous Sensor Coordinate System Calibration Technique for AR Whole Body Interaction (AR 전신 상호작용을 위한 이종 센서 간 좌표계 보정 기법)

  • Hangkee Kim;Daehwan Kim;Dongchun Lee;Kisuk Lee;Nakhoon Baek
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.7
    • /
    • pp.315-324
    • /
    • 2023
  • A simple and accurate whole body rehabilitation interaction technology using immersive digital content is needed for elderly patients with steadily increasing age-related diseases. In this study, we introduce whole-body interaction technology using HoloLens and Kinect for this purpose. To achieve this, we propose three coordinate transformation methods: mesh feature point-based transformation, AR marker-based transformation, and body recognition-based transformation. The mesh feature point-based transformation aligns the coordinate system by designating three feature points on the spatial mesh and using a transform matrix. This method requires manual work and has lower usability, but has relatively high accuracy of 8.5mm. The AR marker-based method uses AR and QR markers recognized by HoloLens and Kinect simultaneously to achieve a compliant accuracy of 11.2mm. The body recognition-based transformation aligns the coordinate system by using the position of the head or HMD recognized by both devices and the position of both hands or controllers. This method has lower accuracy, but does not require additional tools or manual work, making it more user-friendly. Additionally, we reduced the error by more than 10% using RANSAC as a post-processing technique. These three methods can be selectively applied depending on the usability and accuracy required for the content. In this study, we validated this technology by applying it to the "Thunder Punch" and rehabilitation therapy content.

A Study on Dataset Generation Method for Korean Language Information Extraction from Generative Large Language Model and Prompt Engineering (생성형 대규모 언어 모델과 프롬프트 엔지니어링을 통한 한국어 텍스트 기반 정보 추출 데이터셋 구축 방법)

  • Jeong Young Sang;Ji Seung Hyun;Kwon Da Rong Sae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.11
    • /
    • pp.481-492
    • /
    • 2023
  • This study explores how to build a Korean dataset to extract information from text using generative large language models. In modern society, mixed information circulates rapidly, and effectively categorizing and extracting it is crucial to the decision-making process. However, there is still a lack of Korean datasets for training. To overcome this, this study attempts to extract information using text-based zero-shot learning using a generative large language model to build a purposeful Korean dataset. In this study, the language model is instructed to output the desired result through prompt engineering in the form of "system"-"instruction"-"source input"-"output format", and the dataset is built by utilizing the in-context learning characteristics of the language model through input sentences. We validate our approach by comparing the generated dataset with the existing benchmark dataset, and achieve 25.47% higher performance compared to the KLUE-RoBERTa-large model for the relation information extraction task. The results of this study are expected to contribute to AI research by showing the feasibility of extracting knowledge elements from Korean text. Furthermore, this methodology can be utilized for various fields and purposes, and has potential for building various Korean datasets.

Mediation Effect of Play on the Relationship Between Sleep Habits and Cognitive Problem-Solving in Toddlers (유아기 아동의 수면 습관과 인지적 문제해결 능력의 관계에서 놀이의 매개효과 )

  • Lee, Minkyu;Jin, Yeonju;Oh, Seungjae;Hong, Ickpyo
    • Therapeutic Science for Rehabilitation
    • /
    • v.12 no.4
    • /
    • pp.97-109
    • /
    • 2023
  • Objective : This study aimed to investigate the mediating effect of play on the relationship between toddlers' sleep habits and problem-solving. Methods : In total, 1,734 participants were selected from the 3rd wave of the Panel Study on Korean Children. A structural equation modeling approach was utilized to examine the relationship among toddlers' play, sleep habits, and problem-solving, as well as to investigate the mediating effect of play. Results : The monthly age of the study participants ranged from 23 to 32 months, with 885 (51.0%) boys and 849 (49.0%) girls. The indirect effects of play on problem-solving skills (β = 0.137, p = .006) were statistically significant, but the direct effects of sleep habits on problem-solving skills (β = -.015, p = .871) and the total effect (β = 0.122, p = .057) were not significant. Conclusion : This study indicated that sleep habits did not have a direct effect on problem-solving ability, but that the indirect effects were significant and fully mediated by play. Incorrect sleep habits can negatively affect lifelong development. Therefore, parents would need to be aware of whether their child is developing good sleep habits during the toddler age.

Development of Evaluation Model for Learning Company Participating Work-Study Parallel Program using AHP (AHP를 활용한 일학습병행 학습기업 평가모형 개발)

  • Dong-Wook Kim;Hwan Young Choi
    • Journal of Practical Engineering Education
    • /
    • v.15 no.3
    • /
    • pp.671-679
    • /
    • 2023
  • This study aims to establish an evaluation model by quantifying the evaluation index as a follow-up study to the development of evaluation index for work-study parallel learning companies. An evaluation model was established by verifying the 2nd level components based on the quantitative factors of the learning company, the qualitative factors, the competency factors of the person in charge, and the competency factors of the learning workers, which are the highest-level components derived from previous study. For the evaluation of a learning company, an AHP survey was conducted with experts in charge of the company consulting to derive important factors that determine the quality of on-site education and training, and the evaluation model of the learning company was completed and grouped by calculating the weight between evaluation items proceeded. Work-study parallel program was promoted as a key policy to resolve the mismatch between industrial sites and school education and realize a competency-centered society, and as of December 2022, 16,664 companies participated in the training. Learning companies play a very important role as education and training supply organizations that conduct field training. It is expected that the support and consulting plan for each level of learning companies according to the evaluation model presented in this study will be used as basic data to improve the quality of work-study parallel program.

Full-mouth rehabilitation of severely attrited dentition with missing posterior teeth: a case report using digital workflow with jaw motion tracking (심한 교모와 구치부 상실을 보이는 환자의 전악 수복: Jaw motion tracking과 digital workflow를 활용한 증례 보고)

  • Chan Young Park;Younghoo Lee;Seoung-Jin Hong;Janghyun Paek;Kwantae Noh;Ahran Pae;Hyeong-Seob Kim;Kung-Rock Kwon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.4
    • /
    • pp.293-307
    • /
    • 2023
  • Jaw motion tracking, which is introduced in recent case reports, is a method which records the patient's individualized pathway of the mandibular movements along with facebow transfer, and reproduces the information in the virtual space of computer-aided-design/computer-aided-manufacturing (CAD-CAM) software. In this present case, a collapse of the occlusal plane was observed, due the loss of posterior teeth for a long period. Full-mouth rehabilitation with an increase in the occlusal vertical dimension was planned. First, the patient's mandibular movements were recorded on the newly established jaw relation by jaw tracking, and this information was assembled with the patient's intraoral data to create a virtual patient. Implant planning and diagnostic wax-up was done on the virtual patient, leading the fabrication of the provisional prosthesis. On the newly established jaw relation with an increase in the occlusal vertical dimension, canine guidance of the provisional prosthesis was checked. Finally, the provisional prosthesis was carried out to the definitive prosthesis. Using the advantages of the technologies in the digital dentistry, the patient was satisfied with the function and the esthetics after the treatment.

Examination of Aggregate Quality Using Image Processing Based on Deep-Learning (딥러닝 기반 영상처리를 이용한 골재 품질 검사)

  • Kim, Seong Kyu;Choi, Woo Bin;Lee, Jong Se;Lee, Won Gok;Choi, Gun Oh;Bae, You Suk
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.6
    • /
    • pp.255-266
    • /
    • 2022
  • The quality control of coarse aggregate among aggregates, which are the main ingredients of concrete, is currently carried out by SPC(Statistical Process Control) method through sampling. We construct a smart factory for manufacturing innovation by changing the quality control of coarse aggregates to inspect the coarse aggregates based on this image by acquired images through the camera instead of the current sieve analysis. First, obtained images were preprocessed, and HED(Hollistically-nested Edge Detection) which is the filter learned by deep learning segment each object. After analyzing each aggregate by image processing the segmentation result, fineness modulus and the aggregate shape rate are determined by analyzing result. The quality of aggregate obtained through the video was examined by calculate fineness modulus and aggregate shape rate and the accuracy of the algorithm was more than 90% accurate compared to that of aggregates through the sieve analysis. Furthermore, the aggregate shape rate could not be examined by conventional methods, but the content of this paper also allowed the measurement of the aggregate shape rate. For the aggregate shape rate, it was verified with the length of models, which showed a difference of ±4.5%. In the case of measuring the length of the aggregate, the algorithm result and actual length of the aggregate showed a ±6% difference. Analyzing the actual three-dimensional data in a two-dimensional video made a difference from the actual data, which requires further research.

Analysis of Research Trends in Deep Learning-Based Video Captioning (딥러닝 기반 비디오 캡셔닝의 연구동향 분석)

  • Lyu Zhi;Eunju Lee;Youngsoo Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.13 no.1
    • /
    • pp.35-49
    • /
    • 2024
  • Video captioning technology, as a significant outcome of the integration between computer vision and natural language processing, has emerged as a key research direction in the field of artificial intelligence. This technology aims to achieve automatic understanding and language expression of video content, enabling computers to transform visual information in videos into textual form. This paper provides an initial analysis of the research trends in deep learning-based video captioning and categorizes them into four main groups: CNN-RNN-based Model, RNN-RNN-based Model, Multimodal-based Model, and Transformer-based Model, and explain the concept of each video captioning model. The features, pros and cons were discussed. This paper lists commonly used datasets and performance evaluation methods in the video captioning field. The dataset encompasses diverse domains and scenarios, offering extensive resources for the training and validation of video captioning models. The model performance evaluation method mentions major evaluation indicators and provides practical references for researchers to evaluate model performance from various angles. Finally, as future research tasks for video captioning, there are major challenges that need to be continuously improved, such as maintaining temporal consistency and accurate description of dynamic scenes, which increase the complexity in real-world applications, and new tasks that need to be studied are presented such as temporal relationship modeling and multimodal data integration.

Big Data Analytics in RNA-sequencing (RNA 시퀀싱 기법으로 생성된 빅데이터 분석)

  • Sung-Hun WOO;Byung Chul JUNG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.235-243
    • /
    • 2023
  • As next-generation sequencing has been developed and used widely, RNA-sequencing (RNA-seq) has rapidly emerged as the first choice of tools to validate global transcriptome profiling. With the significant advances in RNA-seq, various types of RNA-seq have evolved in conjunction with the progress in bioinformatic tools. On the other hand, it is difficult to interpret the complex data underlying the biological meaning without a general understanding of the types of RNA-seq and bioinformatic approaches. In this regard, this paper discusses the two main sections of RNA-seq. First, two major variants of RNA-seq are described and compared with the standard RNA-seq. This provides insights into which RNA-seq method is most appropriate for their research. Second, the most widely used RNA-seq data analyses are discussed: (1) exploratory data analysis and (2) pathway enrichment analysis. This paper introduces the most widely used exploratory data analysis for RNA-seq, such as principal component analysis, heatmap, and volcano plot, which can provide the overall trends in the dataset. The pathway enrichment analysis section introduces three generations of pathway enrichment analysis and how they generate enriched pathways with the RNA-seq dataset.

5G Network Resource Allocation and Traffic Prediction based on DDPG and Federated Learning (DDPG 및 연합학습 기반 5G 네트워크 자원 할당과 트래픽 예측)

  • Seok-Woo Park;Oh-Sung Lee;In-Ho Ra
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.33-48
    • /
    • 2024
  • With the advent of 5G, characterized by Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low Latency Communications (URLLC), and Massive Machine Type Communications (mMTC), efficient network management and service provision are becoming increasingly critical. This paper proposes a novel approach to address key challenges of 5G networks, namely ultra-high speed, ultra-low latency, and ultra-reliability, while dynamically optimizing network slicing and resource allocation using machine learning (ML) and deep learning (DL) techniques. The proposed methodology utilizes prediction models for network traffic and resource allocation, and employs Federated Learning (FL) techniques to simultaneously optimize network bandwidth, latency, and enhance privacy and security. Specifically, this paper extensively covers the implementation methods of various algorithms and models such as Random Forest and LSTM, thereby presenting methodologies for the automation and intelligence of 5G network operations. Finally, the performance enhancement effects achievable by applying ML and DL to 5G networks are validated through performance evaluation and analysis, and solutions for network slicing and resource management optimization are proposed for various industrial applications.