• 제목/요약/키워드: 검색질의어

Search Result 468, Processing Time 0.022 seconds

Pattern Analysis-Based Query Expansion for Enhancing Search Convenience (검색 편의성 향상을 위한 패턴 분석 기반 질의어 확장)

  • Jeon, Seo-In;Park, Gun-Woo;Nam, Kwang-Woo;Ryu, Keun-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.2
    • /
    • pp.65-72
    • /
    • 2012
  • In the 21st century of information systems, the amount of information resources are ever increasing and the role of information searching system is becoming criticalto easily acquire required information from the web. Generally, it requires the user to have enough pre-knowledge and superior capabilities to identify keywords of information to effectively search the web. However, most of the users undertake searching of the information without holding enough pre-knowledge and spend a lot of time associating key words which are related to their required information. Furthermore, many search engines support the keywords searching system but this only provides collection of similar words, and do not provide the user with exact relational search information with the keywords. Therefore this research report proposes a method of offering expanded user relationship search keywords by analyzing user query patterns to provide the user a system, which conveniently support their searching of the information.

Long-tail Query Expansion using Extractive and Generative Methods (롱테일 질의 확장을 위한 추출 및 생성 기반 모델)

  • Kim, Lae-Seon;Kim, Seong-soon;Jang, Heon-Seok;Park, Seok-Won;Kang, In-Ho
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.267-273
    • /
    • 2020
  • 검색 엔진에 입력되는 질의 중 입력 빈도는 낮지만 상대적으로 길이가 긴 질의를 롱테일 질의라고 일컫는다. 롱테일 질의가 전체 검색 로그에서 차지하는 비중은 높은 반면, 그 형태가 매우 다양하고 검색 의도가 상세하며 개별 질의의 양은 충분하지 않은 경우가 많기 때문에 해당 질의에 대한 적절한 검색어를 추천하는 것은 어려운 문제다. 본 논문에서는 롱테일 질의 입력 시 적절한 검색어 추천을 제공하기 위하여 질의-문서 클릭 정보를 활용한 추출기반 모델 및 Seq2seq와 GPT-2 기반 생성모델을 활용한 질의 확장 방법론을 제안한다. 실험 및 결과 분석을 통하여 제안 방법이 기존에 대응하지 못했던 롱테일 질의를 자연스럽게 확장할 수 있음을 보였다. 본 연구 결과를 실제 서비스에 접목함으로써 사용자의 검색 편리성을 증대하는 동시에, 언어 모델링 기반 질의 확장에 대한 가능성을 확인하였다.

  • PDF

한글 문서의 색인어와 색인 기법

  • 강승식
    • Communications of the Korean Institute of Information Scientists and Engineers
    • /
    • v.22 no.4
    • /
    • pp.72-77
    • /
    • 2004
  • 정보검색 시스템의 성능을 평가하는 요소는 재현율(recall)과 정확률(precision)이고, 재현율과 정확률을 결정하는데 가장 큰 영향을 미치는 것은 문서에 대한 색인어와 색인어 가중치이다[1]. '질의어'에 적합한 문서를 검색할 수 있는지를 결정하는 것은 "적합 문서에 대해 색인이 되어 있는가\ulcorner"하는 문제이며, 이는 재현율에 직접적인 영향을 미치게 된다. 즉, 적합 문서를 색인할 때 '질의어'에 대한 색인이 되어 있지 않은 문서는 검색이 되지 않으며, 또한 부적합 문서에 색인이 되어 있으면 부적합 문서들이 다수 검색되기 때문에 정확률이 낮아지게 된다.이 낮아지게 된다.

Alleviating Semantic Term Mismatches in Korean Information Retrieval (한국어 정보 검색에서 의미적 용어 불일치 완화 방안)

  • Yun, Bo-Hyun;Park, Sung-Jin;Kang, Hyun-Kyu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.12
    • /
    • pp.3874-3884
    • /
    • 2000
  • An information retrieval system has to retrieve all and only documents which are relevant to a user query, even if index terms and query terms are not matched exactly. However, term mismatches between index terms and qucry terms have been a serious obstacle to the enhancement of retrieval performance. In this paper, we discuss automatic term normalization between words in text corpora and their application to a Korean information retrieval system. We perform two types of term normalizations to alleviate semantic term mismatches: equivalence class and co-occurrence cluster. First, transliterations, spelling errors, and synonyms are normalized into equivalence classes bv using contextual similarity. Second, context-based terms are normalized by using a combination of mutual information and word context to establish word similarities. Next, unsupervised clustering is done by using K-means algorithm and co-occurrence clusters are identified. In this paper, these normalized term products are used in the query expansion to alleviate semantic tem1 mismatches. In other words, we utilize two kinds of tcrm normalizations, equivalence class and co-occurrence cluster, to expand user's queries with new tcrms, in an attempt to make user's queries more comprehensive (adding transliterations) or more specific (adding spc'Cializationsl. For query expansion, we employ two complementary methods: term suggestion and term relevance feedback. The experimental results show that our proposed system can alleviatl' semantic term mismatches and can also provide the appropriate similarity measurements. As a result, we know that our system can improve the rctrieval efficiency of the information retrieval system.

  • PDF

Extended Query Search Performance Evaluations for Vector Model and Probabilistic Model of Information System (정보검색시스템의 확률 및 벡터모델에 대한 질의 확장 검색 성능 평가)

  • 전유정;변동률;박순철
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.9 no.1
    • /
    • pp.36-42
    • /
    • 2004
  • In this paper, we compare the vector model performance with the probabilistic model of information system. We use LSI(Latent Semantic Indexing) model for vector model, while Condor information search system that is ready to sell on business is used as a probabilistic model. Each model produces the search results from the original queries and the queries extended by a dictionary definition. We compare those results between two models and find out the vector model is much better than the probabilistic model for the most queries.

  • PDF

Web Information Retrieval based on Natural Language Query Analysis and Keyword Expansion (자연어 질의 분석과 검색어 확장에 기반한 웹 정보 검색)

  • 윤성희;장혜진
    • Journal of the Korean Society for information Management
    • /
    • v.21 no.2
    • /
    • pp.235-248
    • /
    • 2004
  • For the users of information retrieval systems, natural language query is the more ideal interface, compared with keyword and boolean expressions. This paper proposes a retrieval technique with expanded keyword from syntactically-analyzed structures of natural language query as user input. Through the steps combining or splitting the compound nouns based on syntactic tree traversal of the query, and expanding the other-formed or shorten-formed into multiple keyword, it can enhance the precision and correctness of the retrieval system.

The development of a document retrieval system using thesaurus and signature file (시소러스 및 요약화일을 이용한 문서 검색시스템)

  • Jeong, Sang-Cheol;Shin, Dong-Wook
    • Annual Conference on Human and Language Technology
    • /
    • 1994.11a
    • /
    • pp.400-408
    • /
    • 1994
  • 본 논문에서는 요약화일을 이용하여 복합명사를 효율적으로 처리하며 시소러스를 이용하여 검색하는 한글문서 검색시스템을 제안한다. 본 한글문서 검색 시스템은 한글문서를 대상으로 색인하는 자동색인기와 사용자의 질의를 받아 관련된 문서를 검색하는 검색기로 구성된다. 자동색인기는 우선 한글문서를 대상으로 최장일치 방법으로 명사들을 출출한 후 복합명사의 패턴을 분석하여 복합명사의 가능성이 높은 것들을 복합명사화한다. 두번째로 이들 복합명사들을 1+2SP 방식으로 코딩한 후 요약화일 방법을 이용하여 요약화일을 작성한다. 검색기는 사용자 질의어를 받아 명사들을 추출한 후 시소러스를 이용하여 질의어를 확장한다. 다음 확장된 질의어를 1+2SP 방식으로 코딩한 후 관련된 문서를 검색한다. 본 논문에서는 한국통신에서 만든 코퍼스를 이용하여 제안된 방법의 성능을 평가하였는데 복합명사 처리 및 시소러스 이용방식이 효율적임이 입증되었다. 또한 KAIST에서 개발한 문서검색 시스템보다 동일한 코퍼스로 실험하였을 경우 재현률 및 정확률이 $7{\sim}8%$ 정도 앞서 기존의 시스템보다도 성능이 우수하다는 것이 밝혀졌다.

  • PDF

Query Expansion and Term Weighting Method for Document Filtering (문서필터링을 위한 질의어 확장과 가중치 부여 기법)

  • Shin, Seung-Eun;Kang, Yu-Hwan;Oh, Hyo-Jung;Jang, Myung-Gil;Park, Sang-Kyu;Lee, Jae-Sung;Seo, Young-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.743-750
    • /
    • 2003
  • In this paper, we propose a query expansion and weighting method for document filtering to increase precision of the result of Web search engines. Query expansion for document filtering uses ConceptNet, encyclopedia and documents of 10% high similarity. Term weighting method is used for calculation of query-documents similarity. In the first step, we expand an initial query into the first expanded query using ConceptNet and encyclopedia. And then we weight the first expanded query and calculate the first expanded query-documents similarity. Next, we create the second expanded query using documents of top 10% high similarity and calculate the second expanded query- documents similarity. We combine two similarities from the first and the second step. And then we re-rank the documents according to the combined similarities and filter off non-relevant documents with the lower similarity than the threshold. Our experiments showed that our document filtering method results in a notable improvement in the retrieval effectiveness when measured using both precision-recall and F-Measure.

On Regularity of Daily Distribution of Queries in Search Engine (검색엔진에서 일간질의 어분포의 정상성에 관한 연구)

  • Park, Sang-Gue;Lee, Chan-Kyu;Yoon, Kyung-Hyun;Kim, Seong-Hee;Lee, Jun-Ho
    • Journal of the Korean Society for information Management
    • /
    • v.24 no.4
    • /
    • pp.255-265
    • /
    • 2007
  • In this paper we analyzed regularity of daily patterns of distribution of Queries coming from internet search engine. And then, we proposed a Pareto distribution and Zipf law for identifying the query distribution and applied them to daily queries on the search engine during 2 week. We found that there is some evidence that Pareto and Zipf laws can be applied to evaluate the regularity of daily patterns of distribution of queries in search engine. Those results can be used to provide a better understanding of the social interests and trends using the query distribution patterns.

Semantic Information Retrieval using User-Word Intelligent Network (사용자 어휘지능망을 이용한 의미적 정보검색)

  • Kim, Chang-Hwan;Im, Ji-Hui;Choe, Ho-Seop;Yoon, Hwa-Mook;Ock, Cheol-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.11a
    • /
    • pp.157-160
    • /
    • 2006
  • 웹 자원이 방대함에 따라, 사용자가 원하는 정보를 얼마나 정확하게 제시하느냐가 정보검색시스템 성능을 판단하는 기준이 된다. 그러나 동형이의어만을 질의어로 이용한 검색 결과는 동형이의어 각 의미에 관련된 문서가 혼재되어 있거나, 특정 의미에 관련된 문서가 집중적으로 나타나는 현상을 볼 수 있다. 이에 본 논문에서는 한국어 사용자 어휘지능망(U-WIN)의 관계정보를 이용하여 질의어의 모호성을 해결하고 의미적 정보검색의 기반을 마련하고자 한다. 우선, 전문분야에 주로 사용되는 동형이의어와 보편적으로 사용하는 동형의어를 구번하여 질의어로 선정하고, '질의어+상위어' 형태의 확장 질의어에 대해 두 개의 포탈사이트(Google, Naver)를 대상으로 웹 문서를 검색하여 정확률이 각각 81.5%(Naver), 65.5%(Google)로 나타났다.

  • PDF