• Title/Summary/Keyword: 검량선

Search Result 265, Processing Time 0.035 seconds

Analysis of Formaldehyde and Acetaldehyde in Alcoholic Beverage (유통 주류의 포름알데히드 및 아세트알데히드 함량분석)

  • Park, Young-Seok;Lee, Yun-Jeung;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.10
    • /
    • pp.1412-1419
    • /
    • 2006
  • Concentrations of formaldehyde and acetaldehy de were respectively analysed in forty-five alcoholic beverages obtained from the market. After derivatization with PFBHA, GC-ECD and GC-MSD were employed for analysis. The peak area of aldehyde oximes (derivatives with PFBHA) increased with the increasing ethanol content (5%, 10%, 15%, 20% and 40%). When three-point calibration corves for the selected ethanol concentration (5, 13, 21 and 40%, v/v) were studied, suitable linearity against ethanol concentration was observed only under 5, 13, and 21% (ethanol, v/v). After analysis, maximum content of formaldehyde (average of 0.272 ppm) and acetaldehyde (average of 15.262 ppm) among the observed 45 alcoholic beverages was found from whisk (2 species) while minimum content of formaldehyde (average of 0.009 ppm) and acetaldehyde (average of 0.805 ppm) was found from diluted soju (4 species).

Analytical Method Validation of Quercetin in Changnyeong Onion Extract as a Functional Ingredient for Functional Health Food (건강기능식품 기능성원료로서 창녕양파추출액의 지표성분 Quercetin 분석법)

  • Jeon, Seon-Young;Jeong, Eun-Jeong;Baek, Jeong-Hwa;Cha, Yong-Jun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.4
    • /
    • pp.565-569
    • /
    • 2011
  • Validation of quercetin as a marker compound in the standardization of Changnyeong onion extract developed for functional health food was attempted by analytical method. The specificity was satisfied with retention time and photo diode array (PDA) spectrum by analysis of quercetin using HPLC and comparison with standard compound. It showed a high linearity in the calibration curve as coefficient of correlation ($R^2$) of 0.9986, and the limit of detection (LOD) and limit of quantitation (LOQ) were 0.2 mg/L and 0.5 mg/L, respectively. Recovery rate test with quercetin concentration of 0.05, 0.075 and 0.1 mg/mL was revealed in the high range of 82.36~95.26%, 82.70~98.24% and 87.91~95.11%, respectively. The intra-day and inter-day precision in quercetin for Changnyeong onion extracts was 0.10~3.28% and 0.96~5.79%, respectively. Therefore, application of quercetin was validated in analytical method as a marker compound in Changnyeong onion extracts.

Monitoring on Benzo(a)pyrene Content in Oriental medicine (유통 한약재 중 벤조피렌 함유량에 관한 모니터링)

  • Lee, Mi-Yeong;Jung, Sang-Mi;Lee, Gye-Won
    • Journal of Digital Convergence
    • /
    • v.10 no.7
    • /
    • pp.201-206
    • /
    • 2012
  • Benzo(a)pyrene is a polycyclic aromatic hydrocarbons (PAHs) whose metabolites are mutagenic and highly carcinogenic and is listed as a Group 1 carcinogen by the IARC. It has been found at variable concentrations in several foods and is associated with several factors during the process including contaminated raw materials, exposure of environment, and procedure of process or cooking. In this study, benzo(a)pyrene in 45 oriental medicines were determined by HPLC/FLD. The calibration curves of benzo(a)pyrene was linear over the concentration range of 0.5~40 ng/mL with correlation coefficient of above 0.999. The limit of detection (LOD) and limit of quantitation (LOQ) of benzo(a)pyrene were 0.04 and 0.10 ${\mu}g/kg$. Benzo(a)pyrene in 3 samples out of 45 samples was not detected. The level of benzo(a)pyrene in 26 (57.7%), 8 (17.8%) and 7 (15.6%) samples was 0.1~0.5, 0.5~1.0 and 1.0~5.0 ${\mu}g/kg$, respectively. Especially, content of benzo(a)pyrene in Coptis Rhizome is the highest (5.97 ${\mu}g/kg$). In conclusion, these results suggest that could be applied to fundamental study and guideline on drying condition to decrease content of benzo(a)pyrene in oriental medicine.

Determination of PFOS in LDPE and the Result for Proficiency Testing (LDPE 중 PFOS의 분석법 개발과 비교숙련도 결과)

  • Jung, Jae Hak;Lee, Young Kyu;Myung, Seung Woon;Cheong, Nam Yong
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.1
    • /
    • pp.40-51
    • /
    • 2013
  • In order to develop a quantitation method for Perfluorooctanesulfonic acid(PFOS) contained in plastics that are mainly used in electric and electronic equipment, this study consisted of conducting method validations with LDPE samples using soxhlet solvent extraction and LC/MS. As a result, the limits of detection and quantitation (LOD, LOQ) were $2.58{\mu}g/L$ and $7.82{\mu}g/L$, respectively. Additionally, the recovery was 96-102%. For the correlation coefficient of LC/MS, the $r^2$ value was 0.9992 in the concentration range of $7.82-100{\mu}g/L$, which confirmed its linearity. Furthermore, for the standardization of the analysis method for PFOS in electric and electronic equipment to correspond to EU environmental regulations, we conducted a proficiency test with a number of domestic and international testing laboratories. Three of the ten testing laboratories that participated in the proficiency test submitted outliers. Accordingly, we examined the cause of the outliers using the $^{19}F$ NMR, finding that the main cause was an error in the processing of the results for isomers in PFOS that existed in standard solutions and samples.

Simultaneous Determination of Heavy Metals in Cosmetic Products by Ion Chromatography (이온 크로마토그래피를 이용한 화장품 중 중금속 동시분석)

  • Lee, So-Mi;Jeong, Hye-Jin;Kim, Han-Kon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.1
    • /
    • pp.57-62
    • /
    • 2008
  • No matter how small amount of heavy metals it may be cause skin allergies through percutaneous adsorption when existing in cosmetic products as impurities. In order to develop a highly sensitive method for simultaneous determination of $Pb^{2+},\;Fe^{2+},\;Cu^{2+},\;Ni^{2+},\;Zn^{2+},\;Co^{2+},\;Cd^{2+},\;and\;Mn^{2+}$ in coloring agents and cosmetic products with rapidity and accuracy, we carried out the determination on ion chromatography. All of these metals are well separated through a bifunctional ion-exchange column(IonPac CS5A) and detected by post-column reaction and spectrophotometric detection. The calibration graphs are linear($r^2>0.999$) in the range $0.1{\sim}1000{\mu}g/mL$. Detection limits for 200 ${\mu}L$ of sample solution are at the level of ${\mu}g/L$, which is sufficient for judging whether the product is safe or not. The relative standard deviations(RSDs) of the retention time and the peak area are less than 0.21 and 1.24%, respectively. The recovery rates are $97{\sim}104%$. The new method was applied to analyze the amount of heavy metals which were contained in 22 cosmetic products and 11 coloring agents.

HPLC analytical method validation of Aralia elata extract as a functional ingredients (두릅 추출물의 기능성 원료 표준화를 위한 HPLC 분석법 검증)

  • Ahn, Eun-Mi;Choi, Song-Am;Choi, Ji-Young
    • Food Science and Preservation
    • /
    • v.24 no.6
    • /
    • pp.795-801
    • /
    • 2017
  • Aralia elata Seemann (AE) has long been used as a folk medicine for the treatment of various diseases including diabetes mellitus, anti-arthritic, and anti-gastric ulcer agent in Korea, Japan, and China. This study was performed to establish a simple and reliable HPLC/UV analytical method for determination of most active anti-hypertensive compound, a 3-O-${\alpha}$-L-rhamnopyranosyl($1{\rightarrow}$2)-${\alpha}$-L-arabinopyranosyl hederagenin 28-O-${\beta}$-D-xylopyranosyl($1{\rightarrow}6$)-${\beta}$-D-glucopyranosylester (HE) for the standardization of the shoot extract of AE as a health functional food ingredient. The quantitative analytical method of HE was optimized by HPLC analysis using reverse-phase C18 column at $40^{\circ}C$ with $H_2O$ and acetonitrile (70:30, v/v) as an isocratic mobile phase at a flow rate of 1.0 mL/min and detection wavelength of UV 205 nm. This HPLC/UV analytical method showed good specificity and high linearity in the tested range of 0.03125-2.0mg/ml with excellent coefficient of determination ($R^2$) of 0.9999. The limit of detection and limit of quantification were $12.0{\mu}g/mL$ and $36.5{\mu}g/mL$, respectively. Relative standard deviation (RSD) values of data from intra- and inter-day precision were less than 0.2% and 0.1%, respectively. These results indicate that the established HPLC/UV analytical method is very simple, specific, precise, accurate, and reproducible and thus can be useful for the quantitative analysis of HE as a functional anti-hypertensive compound in AE extract.

Validation of Method Determining Marmesin in Broussonetia kazinoki Extract (닥나무 추출물의 Marmesin 성분 분석법 검증)

  • Kwon, Jin Gwan;Seo, Changon;Hong, Seong Su;Seo, Dong-Wan;Oh, Joa Sub;Kim, Jin Kyu
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.11
    • /
    • pp.1604-1609
    • /
    • 2016
  • An HPLC analysis method was developed for standard determination of marmesin as a functional health material in Broussonetia kazinoki extract. HPLC was performed on a $C_{18}$ Kromasil column ($4.6{\times}250mm$, $5{\mu}m$) with a gradient elution of 0.1% (v/v) trifluoroacetic acid and acetonitrile at a flow rate of 1.0 mL/min at $30^{\circ}C$. The analyte was detected at 330 nm. The HPLC method was validated in accordance with International Conference on Harmonization guidelines for analytical procedures with respect to specificity, precision, accuracy, and linearity. The limit of detection and quantitation were 6.2 and $18.6{\mu}g/mL$, respectively. Calibration curves showed good linearity ($r^2$>0.9999), and the precision of analysis was satisfactory (less than 0.3%). Recoveries of quantified compound ranged from 100.35 to 101.18%. This result indicates that the established HPLC method is very useful for the determination of marker compounds in B. kazinoki extracts.

Validation of the LC-MS/MS Method for Ginsenoside Rb1 Analysis in Human Plasma (LC-MS/MS를 이용한 인체 혈장에서 Ginsenoside Rb1의 분석법 검증)

  • Han, Song-Hee;Kim, Yunjeong;Jeon, Ji-Young;Hwang, Minho;Im, Yong-Jin;Lee, Sun Young;Chae, Soo-Wan;Kim, Min-Gul
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.12
    • /
    • pp.1753-1757
    • /
    • 2012
  • A new liquid chromatographic tandem mass spectrometric (LC-MS/MS) assay for the quantification of ginsenoside Rb1 in human plasma was developed and validated. The separation was performed on a Agilent C18 column ($4.6mm{\times}150mm$, particle size 5 ${\mu}m$) with a gradient elution of 0.1% formic acid in water and 0.1% formic acid in methanol and a flow rate of 0.9 mL/min. The analyte was determined using electrospray positive ionization mass spectrometry in the multiple reaction monitoring (MRM) mode (m/z 1131.714${\rightarrow}$365.303). Human plasma samples were extracted with acetone : water (50:50) by the liquid-liquid extraction method. The method was linear over the dynamic range of 10~500 ng/mL with a correlation coefficient of r=0.9995. The intra-and inter-day precision over the concentration range of ginsenoside Rb1 was lower than 5.8% (correlation of variance, CV), and the accuracy was between 96.0~104.6%. This LC-MS/MS assay of ginsenoside Rb1 in human plasma is applicable for quantification in a pharmacokinetic study.

Gas Chromatographic Analysis on the Residual of Fungicide Fenhexamid in Crops(Cucumber, Strawberry and Grape) (작물(오이, 딸기, 포도) 중 살균제 Fenhexamid의 잔류성에 대한 기체 크로마토그래피 분석)

  • Han, Seong-Soo;Lo, Seog-Cho;Kim, Won-Ju;Park, PiII-Jae;Kim, Il-Kwang
    • Analytical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.70-77
    • /
    • 2003
  • The optimum conditions for the residue analysis of hydroxyanilide fungicide fenhexamid on cucumber, strawberry and grape were investigated by gas chromatography equipped with electron capture detector (GC-ECD) and the residual amount was determined by sprayed days before harvest. Each samples were extracted with acetone, filtered and concentrated to 50 mL. The concentrated extracts were transferred to dichloromethane and then thoroughly concentrated. The concentrated phase was loaded on the filtration column stuffed with silica gel and purified with acetone:hexane (5:95, 15:85, v/v) mixed solvent. The regression equation and linearity of the standard calibration curves between 0.05~2.00 ng were as follows : cucumber; Y=312.40X+10.26, $R^2=0.9996$, strawberry; Y=313.33X+5.54, $R^2=0.9998$, grape; Y=253.27X-2.23, $R^2=0.9994$. From the standard additional experiments with 0.10 mg/L and 0.40 mg/L, the average recoveries of cucumber, strawberry and grape were 94.8%, 88.1% and 93.7%, respectively and the detection limits were all the same as 0.01 mg/L. Residual amounts in crops were ranged from 0.01 to 0.58 mg/L.

The study on the measurement of volatile organic compounds in the air of A and B industrial area (모 공단 대기 중 휘발성 유기화합물 측정에 관한 연구)

  • Shin, Ho-Sang;Ahn, Hye-Sil
    • Analytical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.130-144
    • /
    • 2004
  • Recently, the air pollution in A and B industrial area has become one of the most important issues, then 60 VOCs in the area were measured using a highly sensitive method. The VOCs were adsorbed onto Carbotrap using air sampler and subsequently desorbed by a thermal desorber system into gas chromatograph-mass spectrometry (TDS-GC-MS). The peaks of all compounds had good chromatographic properties and offered very sensitive response for the EI-MS (SIM). Method detection limits (MDL) ranged from 0.01 to 0.1 ppt(v/v), and linearities of calibration curves were over 0.995. We analyzed total 90 atmosphere air samples of A and B industrial complex using the method. Benzene, toluene, ethylbenzene, xylene, n-hexane, fluorotrichloromethane, carbon tetrachloride, 1,2-dichloroethane, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, styrene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, sec-butylbenzene and naphthalen were identified as the major compounds in the air, and their average concentrations were 0.81, 5.02 1.30, 3.0, 0.81, 37.9, 0.07, 0.15, 0.15, 0.79, 0.06, 0.33, 0.03, 0.12, 0.23, and 0.35 ppb(v/v), respectively. The concentrations of VOCs were low in summer and high in fall or winter. When the concentrations detected in air compare with WHO's norm, no case exceed it.