• Title/Summary/Keyword: 걸음걸이 패턴

Search Result 11, Processing Time 0.027 seconds

Fabrication of shoes for analyzing human gait pattern using strain sensors (스트레인센서를 이용한 걸음걸이 패턴 분석 신발제작)

  • Kim, Eung-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.9
    • /
    • pp.1407-1412
    • /
    • 2013
  • The human gait pattern analysis shoes have been developed for our healthy lfe, which is largely dependent on a posture and a skeletal structure affected by daily lifestyle and gait pattern. There are generally 3 types of human gait, such as normal gait, intoeing gait, and outtoeing gait. We have analyzed one's gait pattern through walking put on the developed shoes.

Classification of walking patterns using acceleration signal (가속도 신호를 이용한 걸음걸이 패턴 분류)

  • Jo, Heung-Kuk;Ye, Soo-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1901-1906
    • /
    • 2010
  • This classification of walking patterns is important and many kinds of applications. Therefore, we attempted to classify walking on level ground from slow walking to fast walking using a waist acceleration signal. A tri-axial accelerometer was fixed to the subject's waist and the three acceleration signals were recorded by bluetooth module at a sampling rate of 100 Hz eleven healthy. The data were analyzed using discrete wavelet transform. Walking patterns were classified using two parameters; One was the ratio between the power of wavelet coefficients which were corresponded to locomotion and total power in the anteroposterior direction (RPA). The other was the ratio between root mean square of wavelet coefficients at the anteroposterior direction and that at the vertical direction(RAV). Slow walking could be distinguished by the smallest value in RPA from other walking pattern. Fast walking could be discriminated from level walking using RAV. It was possible to classify the walking pattern using acceleration signal in healthy people.

Silhouette-based Gait Recognition Using Homography and PCA (호모그래피와 주성분 분석을 이용한 실루엣 기반 걸음걸이 인식)

  • Jeong Seung-Do;Kim Su-Sun;Cho Tae-Kyung;Choi Byung-Uk;Cho Jung-Won
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.1
    • /
    • pp.31-40
    • /
    • 2006
  • In this paper, we propose a gait recognition method based on gait silhouette sequences. Features of gait are affected by the variation of gait direction. Therefore, we synthesize silhouettes to canonical form by using planar homography in order to reduce the effect of the variation of gait direction. The planar homography is estimated with only the information which exist within the gait sequences without complicate operations such as camera calibration. Even though gait silhouettes are generated from an individual person, fragments beyond common characteristics exist because of errors caused by inaccuracy of background subtraction algorithm. In this paper, we use the Principal Component Analysis to analyze the deviated characteristics of each individual person. PCA used in this paper, however, is not same as the traditional strategy used in pattern classification. We use PCA as a criterion to analyze the amount of deviation from common characteristic. Experimental results show that the proposed method is robust to the variation of gait direction and improves separability of test-data groups.

  • PDF

Design and Implementation of BNN-based Gait Pattern Analysis System Using IMU Sensor (관성 측정 센서를 활용한 이진 신경망 기반 걸음걸이 패턴 분석 시스템 설계 및 구현)

  • Na, Jinho;Ji, Gisan;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.5
    • /
    • pp.365-372
    • /
    • 2022
  • Compared to sensors mainly used in human activity recognition (HAR) systems, inertial measurement unit (IMU) sensors are small and light, so can achieve lightweight system at low cost. Therefore, in this paper, we propose a binary neural network (BNN) based gait pattern analysis system using IMU sensor, and present the design and implementation results of an FPGA-based accelerator for computational acceleration. Six signals for gait are measured through IMU sensor, and a spectrogram is extracted using a short-time Fourier transform. In order to have a lightweight system with high accuracy, a BNN-based structure was used for gait pattern classification. It is designed as a hardware accelerator structure using FPGA for computation acceleration of binary neural network. The proposed gait pattern analysis system was implemented using 24,158 logics, 14,669 registers, and 13.687 KB of block memory, and it was confirmed that the operation was completed within 1.5 ms at the maximum operating frequency of 62.35 MHz and real-time operation was possible.

The Detection of Gait Cycle and Realtime Monitoring System Using the Accelerometer (가속도 센서를 이용한 걸음수 검출 및 실시간 모니터링 시스템)

  • Lee, I.H.;Kim, J.C.;Jung, S.M.;Yoo, Sun-K.
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.476-477
    • /
    • 2008
  • 본 연구에서는 가속도 센서를 이용하여 보행패턴을 검출하고 가속도 센서의 출력 값을 무선으로 PC에 실시간으로 전달할 수 있는 휴대용 모듈을 개발하였다. PC에서는 휴대장치로부터 전송되는 데이터를 수집하여 운동패턴을 화면에 실시간으로 출력할 수 있게 하였다. 휴대 장치의 전력 소모를 최대한 줄이기 위해 무선 전송 부분은 zigbee 통신을 사용하였다. 착용자의 걸음걸이 패턴을 분석하기 위해 2축 가속도 센서를 사용하였으며 기본적인 보행수는 임계치를 사용하는 moving average 알고리즘을 이용하여 마이크로 콘트롤러에서 처리하였다.

  • PDF

A Study on Energy Efficiency of Quadruped Walking Robot (4족 보행 로봇의 에너지효율에 관한 연구)

  • 안병원;배철오;박영산;박중순;이성근
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.309-312
    • /
    • 2003
  • Though a legged robot has high terrain adaptability as compared with a wheeled vehicle, its moving speed is considerably low in general. For attaining a high moving speed with a legged robot, a dynamically stable walking, such as running for a biped robot and a trot gait or a bound gait for a quadruped robot, is a promising solution. However, energy efficiency of a dynamically stable walking is generally lower than the efficiency of a stable gait such as a crawl gait. In this paper, we present an experimental study on the energy efficiency of a quadruped walking vehicle. Energy consumption of two walking patterns for a trot gait is investigated though experiments using a TITAN-VIII.

  • PDF

Method for Classification of Age and Gender Using Gait Recognition (걸음걸이 인식을 통한 연령 및 성별 분류 방법)

  • Yoo, Hyun Woo;Kwon, Ki Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1035-1045
    • /
    • 2017
  • Classification of age and gender has been carried out through different approaches such as facial-based and audio-based classifications. One of the limitations of facial-based methods is the reduced recognition rate over large distances, while another is the prerequisite of the faces to be located in front of the camera. Similarly, in audio-based methods, the recognition rate is reduced in a noisy environment. In contrast, gait-based methods are only required that a target person is in the camera. In previous works, the view point of a camera is only available as a side view and gait data sets consist of a standard gait, which is different from an ordinary gait in a real environment. We propose a feature extraction method using skeleton models from an RGB-D sensor by considering characteristics of age and gender using ordinary gait. Experimental results show that the proposed method could efficiently classify age and gender within a target group of individuals in real-life environments.

A Computer Simulation on the Efficiency of Energy Consumption for Quadruped Walking Robot (4족 보행로봇의 소비에너지 효율에 관한 시뮬레이션)

  • Ahn Byong-Won;Bae Cherl-o;Eom Han-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.6
    • /
    • pp.1247-1252
    • /
    • 2005
  • Though a legged robot has a high terrain adaptability as compared with a wheeled robot, its moving speed is considerably low in general. For attaining a high moving speed with a logged robot, a dynamically stable walking is a promising solution. However, the energy efficiency of a dynamically stable walking is generally lower than the efficiency of a stable gait such as a crawl gait. In this paper, energy consumption of two walking patterns for a trot gait is simulated through modeling a quadruped walking robot named TITAN-VIII.

User Authentication Using Accelerometer Sensor in Wrist-Type Wearable Device (손목 착용형 웨어러블 기기의 가속도 센서를 사용한 사용자 인증)

  • Kim, Yong Kwang;Moon, Jong Sub
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.2
    • /
    • pp.67-74
    • /
    • 2017
  • This paper proposes a method of user authentication through the patterns of arm movement with a wrist-type wearable device. Using the accelerometer sensor which is built in the device, the 3-axis accelerometer data are collected. Then, the collected data are integrated and the periodic cycle are extracted. In the cycle, the features of frequency are generated with the accelerometer. With the frequency features, 2D Gaussian mixture are modelled. For authenticating an user, the data(the accelerometer) of the user at some point are tested with confidence interval of the Gaussian distribution. The model showed a valuable results for the user authentication with an example, which is average 92% accuracy with 95% confidence interval.

Design of complex IPS system to improve positioning accuracy (측위 정확도 향상을 위한 복합 IPS 시스템 설계)

  • Lee, Hyoun-sup;Kim, Jin-deog
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1917-1922
    • /
    • 2017
  • WPS(Wifi Positioning System) conducts positioning using wireless signals scattered in real world. This process is divided into two stages: Construction Stage that collects information on wireless signals for determining location and constructs a radio map and Positioning Stage that compares the constructed information with the collected information on wireless signals. WPS lowers the accuracy of positioning if changes occur to the collected signals during positioning. PDR have recently been studied. IPS is a system designed to find out the final destination by analyzing pedestrian's no. of gait, travel range, and direction through inertial sensors. If the positioning results of WPS appear in more than two locations, it can be thought as the problem of positioning accuracy. In some cases, problems occur. In this respect, this study analyzes the situations in which the problem as mentioned above occurs and proposes a system to solve this problem through PDR.