DOI QR코드

DOI QR Code

User Authentication Using Accelerometer Sensor in Wrist-Type Wearable Device

손목 착용형 웨어러블 기기의 가속도 센서를 사용한 사용자 인증

  • 김용광 (고려대학교 정보보호대학원 정보보호학과) ;
  • 문종섭 (고려대학교 전자 및 정보공학과)
  • Received : 2016.09.30
  • Accepted : 2016.11.29
  • Published : 2017.02.28

Abstract

This paper proposes a method of user authentication through the patterns of arm movement with a wrist-type wearable device. Using the accelerometer sensor which is built in the device, the 3-axis accelerometer data are collected. Then, the collected data are integrated and the periodic cycle are extracted. In the cycle, the features of frequency are generated with the accelerometer. With the frequency features, 2D Gaussian mixture are modelled. For authenticating an user, the data(the accelerometer) of the user at some point are tested with confidence interval of the Gaussian distribution. The model showed a valuable results for the user authentication with an example, which is average 92% accuracy with 95% confidence interval.

본 논문은 손목 착용형 웨어러블 기기를 착용한 사용자의 걸음걸이에서 흔들리는 팔의 패턴을 통하여 사용자를 인증하는 방법을 제안한다. 기기에 내장된 가속도 센서를 이용하여 샘플링된 3축 가속도 센서 데이터를 수집한다. 수집한 데이터를 신호처리 기법을 통해 변환하여 걸음의 주기를 찾고, 푸리에 변환으로 걸음걸이의 주파수와 크기를 특징으로 추출하여, 2D 혼합 가우시안 모델(GMM)로 학습한 뒤, 신뢰구간 검증 방식으로 테스트한다. 실험결과 95%의 신뢰구간에서 사용자 평균 92%로 사용자를 인증함을 보였다.

Keywords

References

  1. A. K., Hrechak, and J. A. McHugh, "Automated fingerprint recognition using structural matching," Pattern Recognition, Vol. 23, No. 8, pp. 893-904, 1990. https://doi.org/10.1016/0031-3203(90)90134-7
  2. S. H. Noh, and T. K. Kwon, "A comparative study of simple domestic mobile payment services environment," Asia Pacific Journal of Information Systems, 2014.
  3. J. S. Seo and J. S. Moon, "A Study on User Authentication with Smartphone Accelerometer Sensor," Journal of the Korea Institute of Information Security & Cryptology, Vol. 25, No. 6, pp. 1477-1484, 2015. https://doi.org/10.13089/JKIISC.2015.25.6.1477
  4. D. Gafurov, E. Snekkenes, and T. E. Buvarp, "Robustness of biometric gait authentication against impersonation attack," OTM Confederated International Conferences, pp. 479-488, 2006.
  5. H. S Kim, and S. Y. Lee, "Pedestrian Gait Estimation and Localization using an Accelerometer," The Journal of Korea Robotics Society, Vol. 5, No. 4, pp. 279-285, 2010.
  6. Z. Wang, et al., "A Triaxial Accelerometer-Based Human Activity Recognition via EEMD-Based Features and Game-Theory-Based Feature Selection," IEEE Sensors Journal, Vol. 16, No. 9, pp. 3198-3207, 2016. https://doi.org/10.1109/JSEN.2016.2519679
  7. R. Xu, S. Zhou, and W. J. Li, "MEMS accelerometer based nonspecific-user hand gesture recognition," IEEE Sensors Journal, Vol. 12, No. 5, pp. 1166-1173, 2012. https://doi.org/10.1109/JSEN.2011.2166953
  8. L. Tong et al., "HMM-based human fall detection and prediction method using tri-axial accelerometer," IEEE Sensors Journal, Vol. 13, No. 5, pp. 1849-1856, 2013. https://doi.org/10.1109/JSEN.2013.2245231
  9. L. Atallah et al., "Real-time activity classification using ambient and wearable sensors," IEEE Transactions on Information Technology in Biomedicine, Vol. 13, No. 6, pp. 1031-1039, 2009. https://doi.org/10.1109/TITB.2009.2028575
  10. D. M. Karantonis, et al., "Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring," IEEE Transactions on Information Technology in Biomedicine, Vol. 10, No. 1, pp. 156-167, 2006. https://doi.org/10.1109/TITB.2005.856864
  11. Nickel, Claudia, Tobias Wirtl, and Christoph Busch, "Authentication of smartphone users based on the way they walk using k-NN algorithm," Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), 2012 Eighth International Conference on. IEEE, 2012.
  12. Gafurov, Davrondzhon, Einar Snekkenes, and Patrick Bours. "Gait authentication and identification using wearable accelerometer sensor," Automatic Identification Advanced Technologies, 2007 IEEE Workshop on. IEEE, 2007.
  13. H. M. Yoo et al., "Walking number detection algorithm using a 3-axial accelerometer sensor and activity monitoring," The Journal of the Korea Contents Association, Vol. 8, No. 8, pp. 253-260, 2008. https://doi.org/10.5392/JKCA.2008.8.8.253
  14. P. Paalanen et al., "Feature representation and discrimination based on Gaussian mixture model probability densities-practices and algorithms," Pattern Recognition, Vol. 39, No. 7, pp. 1346-1358, 2006. https://doi.org/10.1016/j.patcog.2006.01.005
  15. N. Ravi et al., "Activity recognition from accelerometer data," AAAI, Vol. 5. pp. 1541-1546, 2005.