• Title/Summary/Keyword: 건축폐기물

Search Result 168, Processing Time 0.021 seconds

Effect of Calcium Sulfate Dihydrate (Gypsum) on the Fundamental Properties of Slag-based Mortar (이수석고가 고로슬래그 미분말 베이스 무시멘트 모르타르의 기초물성에 미치는 영향)

  • Baek, Byung Hoon;Han, Cheon Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.252-258
    • /
    • 2014
  • With the vision of 'a low carbon green develop' various industrial by-products were used as replacement of cement, in order to reduce $CO_2$ emissions from the manufacturing process of cement. Blast furnace slag is one of the industrial by-products. Due to the similar chemical compositions to ordinary Portland cement, blast furnace slag have been widely used in concrete with minimum side effects. Hence, in recent years, alkali activated slag-based composites are extensively studied by many researchers. However, the alkali activator can cause a number of problems in practice. Therefore, in this study, an alternative way of activating the slag was investigated. To activate the slag without using an alkali activator, calcium sulfate dihydrate was chosen and mixed with natural recycled fine aggregate. Fundamental properties of the slag-based mortar were tested to evaluate the effect of calcium sulfate dihydrate.

Application of Powdered Waste Glasses and Calcium Carbonate for Improving the Properties of Artificial Lightweight Aggregate Made of Recycled Basalt Powder Sludge (현무암 석분 슬러지를 재활용한 인공경량골재의 물성개선을 위한 폐유리분말과 탄산칼슘의 활용)

  • Park, Soo-Je;Lee, Sung-Eun;Choi, Heebok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.230-236
    • /
    • 2014
  • This study was carried out to investigate the manufacturability of artificial lightweight aggregate as a way to recycle basalt powder sludge, which is a waste produced during the manufacturing process of basalt in Jeju. Powdered waste glasses and calcium carbonate are used to improve the characteristics of manufactured artificial lightweight aggregate. Especially, considering the complex factors of basalt powder sludge, powdered waste glasses, and sintering method, the amount of calcium carbonate is appropriate at the 9 wt.% in order to improve the intumescent of lightweight aggregate. Also, the amount of powdered waste glasses is effective with using less than 50 wt.% and applying the direct sintering method at the same time on decreasing the absorption of lightweight aggregate. Furthermore, in order to manufacture artificial lightweight aggregate of high quality with a low specific gravity and low water absorption, it is considered to be more effective to apply the direct sintering method after the surface of artificial lightweight aggregate is covered with powdered waste glasses.

Basic Properties of Concrete with Ultrafine-Blaine Air Cooling Slag as Admixture (초미분말 서냉 슬래그를 혼화재로 사용한 콘크리트의 기초적 특성)

  • Heo, Jae-Hyuk;Jeong, Sung-Wook;Her, Jae-Won;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.2
    • /
    • pp.77-83
    • /
    • 2009
  • In this study, a test has been carried out to solve the problem with ground granulated blast-furnace slag, low early strength & lack of supply and to find out a way to use as concrete admixture of the ultrafine blaine air cooling slag which is all disposed as the by product of air cooling slag and its test was conducted to the replacement rate of ultrafine blaine air cooling slag & mixing condition of every concrete admixtures by type for the purpose of obtaining later a basic data for practical use of the cement that used ultrafine blaine air cooling slag by conducting comparative analysis. If ultrafine-blaine air cooling slag is used to the concrete following the results, a high efficiency water reducing agent won't be needed much for flow acquisition due to a high increase in flow, and the stripping time of concrete form will be shortened thanks to the acquisition of early strength, And though, it has the problems with long term strength which is similar or a little lower than the 3 types of ground granulated blast-furnace slag, it's still applicable as the substitute materials for 3 types of ground granulated blast-furnace slag at 10, 15% replacement rate of ultrafine-blaine air cooling slag, at which it shows higher activation index than 3 types of ground granulated blast-furnace slag.

Properties Evaluation of Controlled Low Strength Materials Used Industrial by-Products of A Great Quantity (다량의 산업부산물을 활용한 슬러리계 되메움 재료의 물성 평가)

  • Liao, Xiaokai;Kim, Dong-Hun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.5
    • /
    • pp.441-448
    • /
    • 2020
  • In this study, the engineering characteristics of CLSM mixed with GBFS and GF were identified to review the applicability as a replacement material and further evaluate the recharge and field applicability as a joint filler material. This study has resulted in the following findings. First, Using more than 30% of GBFS to replace FA enabled bleeding control through improved fluidity. Moreover, it has been confirmed that effective strength and proper quality can be achieved when it was applied as a refiller and joint filler material with higher early strength than the base material. Second, When using more than 30% of FNS to replace sand, it was found that adding 0.3~0.35 of the AE agent is effective for bleeding control through improved fluidity. Third, When using more than 30% of both GBFS and FNS in combination, it was found that adding 0.3~0.35 of the AE agent is effective for bleeding control through improved fluidity. Also, it was confirmed that proper mixing of 15~60% of GF secured the effective strength and desired quality as a refiller and joint filler material. Fourth, The relationship between the superficial level and internal micro pores of CLSM from the curing process needs to be discussed and reviewed in more detail through further research studies.

A Study on the Mechanical Properties of Recycled Aggregate Concrete Mixed Steel Fiber (강섬유 혼입 순환골재 콘크리트의 역학적 특성에 관한 연구)

  • Shin, Yong-Seok;Cho, Cheol-Hee;Kim, Dae-Sung;Kim, Jeong-Sup
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.131-137
    • /
    • 2009
  • The rate of recycling of waste concrete, which represents the majority of construction-related waste, is increasing. However, a general recognition of the inferior qualify of recycled aggregates and their lower grade of compressive strength, bending strength, shear strength, frost resistance and ductility make the application of recycled aggregates to structures insufficient. Therefore, this study conducted material and member experiments by adding steel fiber for the purpose of improving the properties of recycled aggregate concrete. To synthesize the experimental results, it was found that specimens with a 30% steel fiber admixture had levels of compressive strength, tensile strength and frost resistance that were equivalent to or higher than the standard specimen, and that concrete that had a 30% replacement of recycled aggregates with steel fiber was suitable for application to actual structures.

A Study on the Work Breakdown Structure of Agricultural Facilities for Developing a Construction and Maintenance Information System -Focused on Vinyl house, Glass greenhouse, Cattle shed- (농촌시설물 시공 및 유지관리 정보화 시스템 구축을 위한 작업분류체계 구축에 관한 연구 -비닐하우스, 유리온실, 축사를 중심으로-)

  • Choi, Oh-Young;Kim, Tae-Hui;Kim, Jae-Yeob;Kim, Gwang-Hee;Choi, Eung-Kyoo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.147-155
    • /
    • 2009
  • Recently, the scale and technical complexity of agricultural production has been growing. Therefore, agricultural facilities are being gradually diversified, expanded, and made more complex. To furnish Korea's agricultural industry with international competitiveness, it is thus necessary to introduce new management techniques. The PCM (procurement-construction-maintenance) information management system for agricultural facilities is established by setting up its WBS (work breakdown structure). In this study, the WBS of a facility such as facility, space, element, works, and resources is analyzed. Following this analysts, a WBS of an agricultural facility that is appropriate for the PCM information system of an agricultural facility, is proposed by deriving it from actual WBS.

Analyzing the Engineering Properties of Cement Mortar using Raw Coal Ash as a Microfines for the Mixed Aggregate (미정제 석탄회를 혼합골재의 미립분 보충재로 활용하는 시멘트 모르타르의 공학적 특성 분석)

  • Han, Cheon-Goo;Park, Byung-Moon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.219-225
    • /
    • 2018
  • The aim of the research is improving the quality of concrete by using the alternative aggregate resources and recycling wastes. To make a combined aggregate fitted in standard particle size distribution curve, crushed sand from blasted rock debris was used as a base aggregate. Additionally, to increase the portion of fine particles, sea sand was mixed. Although these aggregate combination fit the standard particle size distribution curve, in this research, raw coal ash was replaced as a microfine. According to the experiment, by replacing 5% raw coal ash, the most favorable results were achieved in aggregate gradation and cement mortar quality.

An Experimental Study on the Fire Resistance Capacity of Asymmetric Slimflor Beam (비대칭 H형강 슬림플로어 보의 내화 성능에 관한 실험적 연구)

  • Park, Won-Sup;Kim, Heung-Youl;Kim, Hyung-Jun
    • Fire Science and Engineering
    • /
    • v.24 no.1
    • /
    • pp.40-45
    • /
    • 2010
  • Asymmetric Slimflor Beam had been unveiled with Thor beam (Hat beam) in Sweden since the late 1970s and had been developed by British Steen and SCI. In the major advanced countries in Europe after the early 1990s have interested in and developed this method, it has been concrened as the absence of hot-rolled section steel in the United Kingdom and welded of asymmetric section steel in Finland in the 2000s. It can be increase total floor area about 10%, save the interior and exterior materials, reduce the waste through reduction of the floor height. And it has more excellent fire resistance performance because less exposed than a regular composite steel beam in fire. This study is purpose that, a fire resistance performance of the Asymmetric Slimflor Beam in fire, it compared the temperature range with deflection of structure by fire behavior and load ratio of structure through change the shape of the steel cross-section in standard fire condition.

A Study on the Possibility of Using Concrete Blocks with Ready Mixed Concrete Sludge (레미콘 슬러지를 활용한 콘크리트블록 활용에 대한 기초 연구)

  • Jung, Jae-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.4
    • /
    • pp.307-312
    • /
    • 2019
  • Sludge generated in the production of ready-mixed concrete is classified as waste and processed at a high cost. In particular, small and medium-sized ready-mix manufacturer are burdened with such costs, and some companies are illegally processing them. Therefore, the purpose of this study is to suggest a method for recycled remicon sludge as a concrete block composition. When the remicon sludge is simply dried, the residual chemical admixture and ettringitee contained in the sludge are present, so that the compressive strength of the concrete block and the compressive strength after freezing and thawing are largely deteriorated to meet the quality standards of the concrete shore and retaining wall block It was not possible to do. As a method for satisfying the physical performance, it was found that the remicon sludge was calcined at a high temperature of about $900^{\circ}C$. to decompose ettringite and residual chemical admixture and then used it.

Study of the environmental assessment of heavy metals bearing slag utilization (중금속 함유 폐기물의 재사용을 위한 환경적 평가에 관한 연구)

  • Bae, Hae-Ryong;Gwon, Yeong-Bae;Moszkowicz Pierre
    • 연구논문집
    • /
    • s.28
    • /
    • pp.161-172
    • /
    • 1998
  • In the recycling industry, the recuperation of zinc from Electric Arc Furnace dust by the Waelz process generates important quantities of slag. This slag presents good mechanical properties, and for the most siliceous slag. a high stability which would enable its use by total or partial substitution of certain granulates in civil engineering Our study (within the framwork of a European programme cofunded by the European Commission-DGXII) concerns the physico-chemical and mineralogical characterization and leaching behaviour of several types of Waelz slag. The leaching tests are regulatory tests and specific characterization tests of leaching behaviour. They take into account the influence of several main parameters of the valorization scenarios envisaged for the slag(e.g. pH, Redox potential, chemical nature of the leachant, type of contact-liquid/ solid etc.).

  • PDF