• Title/Summary/Keyword: 건축자재량

Search Result 63, Processing Time 0.029 seconds

A Prediction of Pollutant Emission Rate using Numerical Analysis and CFD in Double-Layered Building Materials (수치해석 및 CFD를 이용한 소형챔버내 복합건축자재의 오염물질 방출량 예측)

  • Kim, Chang-Nam;Leigh, Seung-Bok;Kim, Tae-Yeon
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.277-282
    • /
    • 2006
  • In order to predict the indoor air pollutant, the VOCs emission rate is used through small chamber in the design process. However, the small chamber method has limitations as the convective mass transfer coefficient, the most important factor when predicting VOCs contamination of indoor air, is different between the small chamber result and the measured data in the actual building. Furthermore, the existing studies which analyzed mass transfer coefficient in the small chamber were directed on the small chambers developed at the time and FLEC(Field and Laboratory Emission Cell), thus, are different from the current small chamber which has been changed with improvements. The purpose of this study is to determine the emission rate of pollutant in double-layered building materials through the CFD(Computational of Fluid Dynamics) and Numerical analysis based on the mass transfer coefficient on singled-layered building material by using the current small chamber widely used in Korea. Futhermore, this study used the new convective mass transfer coefficient($h_m'$) which indicates the existing convective mass transfer coefficient($h_m$) including VOC partition coefficient(k). Also, formaldehyde was selected as target pollutant.

  • PDF

Adsorption of Formaldehyde by Wood Charcoal-Based Building Materials (목탄계 건축자재에 의한 포름알데히드 흡착)

  • Lee, Oh-Kyu;Choi, Joon-Weon;Jo, Tae-Su;Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.61-69
    • /
    • 2007
  • The building materials used for improving indoor air quality, the wood charcoal mixed with cement mortar or natural water paint were examined for their potential removing ability of formaldehyde. After the reaction of samples with formaldehyde in the glass flasks designed in our lab, the remaining formaldehyde was collected using DNPH (2,4-dinitrophenyl hydrazine) cartridges, and their concentration was determined using HPLC. From the results, it was found that the removing amount of formaldehyde per one gram sample containing 5, 10, or 15% of wood charcoal was more than three times compared to that of control (100% cement mortar or water paint). Their elimination percentages from the initial formaldehyde was about 80~90%. The experimental results for wood charcoal-water paint showed a similar trend with those of wood charcoal-cement mortar samples. Their elimination percentages from the initial formaldehyde was about 90%. It is proposed that formaldehyde is adsorbed on the adsorbed 'O' or 'OH' groups in the graphene layers formed through the re-arrangement of lignocellulose in the wood during the carbonization procedure.

Air Content and Fluidity Properties of Cement Matrix according to Anthracite Particle-size (안트라사이트 입도에 따른 시멘트 경화체의 공기량 및 유동성 특성)

  • Kyoung, In-Soo;Pyeon, Su-Jeong;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.92-93
    • /
    • 2017
  • Recently, there has been an increasing interest in natural radioactive gas radon(Rn-222), the problem of indoor air quality pollution to worldwide. It has been scientifically proven to be hazardous to various diseases such as lung cancer and skin cancer if the human body is exposed to long-term accumulation of atomic nuclei due to the destruction of radon and alpha lines. Based on the indoor air quality control policy, this study is a basic experiment in the manufacture of a selective elimination function to containing radon adsorption and reduction of radon concentration, which is used to absorb radioactive isotopes such as phosphorus and radon in indoor environment.

  • PDF

부유식 건축물 유지관리를 위한 환경부하 정량화 기법에 관한 연구

  • Jo, Gyu-Hwan;Park, Dong-Cheon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.10a
    • /
    • pp.285-287
    • /
    • 2012
  • 염해는 철근 콘크리트 구조물의 주요 열화원인으로서 특히 수해양 부유식 건축물의 상부구조는 비래염분에 의한 피해에 노출되어 있고, 해수에 접하고 있는 함체는 다공질 콘크리트의 모세관으로 염수이온이 침투하므로 상당히 높은 수위의 열화 환경에 노출되어 있다고 분류할 수 있다. 본 연구는 해양에서 유입되는 비래염분량을 정량화하여 철근 콘크리트 구조물 뿐만아니라 강재 건자재의 장수명화를 꾀하는 기초자료를 구축하고자 하였다. 1년간에 걸쳐 측정된 비래염분유입 지역은 기존연구에서 조사된 1km 범위을 상당히 초과하고 있으며 그 량도 강재 발청농도를 탁월하게 상회하는 것으로 분석되었다.

  • PDF

Construction cost Prediction Model for Educational Building (학교건축의 공사비 분석 및 예측에 관한 연구)

  • Jeon Yong-Il;Chan Chan-Su;Park Tae-Keun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.290-295
    • /
    • 2004
  • Along with social changes, school buildings are getting complex and diversified unlike the past. However, objective data analysis on construction costs fall short. In particular, ordering agencies are in a great need of objective and practical construction cost management for on-budget construction and procurement of quality goods. This paper analyzes the design diagram for a newly built school with an order from the Daejeon Metropolitan Office of Education, and compares the analysis with those of other kinds of buildings. The results are: the total construction cost of one school unit is 8,017,596,000 won on average; the cost is in the order of building, machinery and equipment, electricity, communications and civil engineering; as to activity, RC construction takes account of $30.3\%$ of the total construction cost. 1'he cost of school construction per M2 is 838,000 won, which is 6th highest of 11 kinds of constructions and slightly lower than 950,000 won, the average price of comparative constructions. When it comes to the percentage, school building takes mote percentage of the total cost than comparative building while machinery and equipment, electricity and communications takes slightly less percentage. Through simple regression analysis of gross coverage, this paper suggests a model formula with which the total construction cost, construction cost in accordance with activity, how much main construction materials are to be used are predictable.

  • PDF

A Study on the Analysis of Carbon Emissions by Transportation Distance of Building Materials (건축자재 운송거리에 따른 탄소배출량 분석에 관한 연구)

  • Kim, Hyeon-Suk;Tae, Sung-Ho;Lim, Hyo-Jin;Jang, Hyeong-Jae;Lee, Chung-Won
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.125-126
    • /
    • 2022
  • As environmental problems around the world become serious, Korea has also raised the greenhouse gas reduction in the building sector to 32.8% compared to 2018, and efforts to reduce carbon in buildings are expanding. Recently, research is being actively conducted to reduce carbon in the long term by expanding the scope of greenhouse gas indirect emissions (Scope3), and even within the domestic Green Standard for Energy and Environmental Design(G-SEED) by quantitatively evaluating the environmental impact of buildings during the entire life cycle. However, it is difficult to accurately evaluate the carbon emission of the transportation process by assuming the material transport distance in the evaluation of the Life Cycle Assessment(LCA). Therefore, in this study, the main building materials of the building were selected through case evaluation and the carbon emission of the material transport process was derived based on the actual transport distance, and this was compared and analyzed with the theoretical LCA results.

  • PDF

Verification of Capacity of Dry-mortar Recycled Blast Sludge as Functional Finishing Material (기능성 마감재로서 현무암 석분슬러지를 재활용한 드라이몰탈의 성능검증)

  • Ko, Dong-Woo
    • The magazine of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.21-28
    • /
    • 2014
  • 최근 증가하는 현무암 석분슬러지를 건설재료로 재활용하기 위한 방안으로, 시멘트 몰탈에서 잔골재의 일부를 현무암석분슬러지로 대체한 후, 기능성 마감재로서의 성능을 검증한 결과 다음과 같은 결과를 얻었다. 1. 현무암 석분슬러지를 포함한 몰탈의 휨인장강도와 압축강도는, 대체율 21%에 도달할 때까지 압축 및 휨인장강도는 일반 시벤트몰탈 대비 각각 47%와 35% 증가하였다. 2. 원적외선 방사율에 있어서도 기존몰탈보다 높은 0.933까지 이르렀으며, 이 수치는 기타 기능성 마감재보다 우수한 원적외선 방사율을 나타내는 것이다. 3. 음이온 방사량은 현무암석분의 대체율에 따른 일관된 경향을 보이지는 않았으나, 일반 시멘트몰탈 보다는 5% ~ 12% 증가효과가 나타났다. 4. 기존 시멘트몰탈의 잔골재의 21%를 현무암석분슬러지로 대체할 경우, 시멘트 몰탈보다 물리적 성질이 증가 함과 동시에, 기능성몰탈로서의 원적외선 방사율, 음이온 방사량의 증진효과가 있었다. 또한 새로운 건축자재의 생산을 통한 경제적 이득은 물론, 산업폐기물의 양을 줄일 수 있다.

  • PDF

Study on the Indoor Air Pollution (실내공기오염에 관한 연구)

  • Kim, Hyung-Suk;Park, Yang-Won
    • Journal of Preventive Medicine and Public Health
    • /
    • v.17 no.1
    • /
    • pp.137-143
    • /
    • 1984
  • 우리 일상생활 가운데 80% 이상은 실내에서 보내기 때문에 실내공기는 우리 인체에 대단히 중요하다. 실내공기를 오염시키는 오염원들은 담배연기, 연한 및 석유난로 음식요리과정, 실내 건축 자재 등이라고 추정할 수 있다. 저자등은 겨울철에 석유나 연탄으로 난방을 하는 사무실, 시장, 식당, 연구실 등의 실내를 대상으로 흡입성 분진량과 연량을 측정하여 실내공기 오염도를 조사한 결과 흡입성 분진량은 $0.03mg/m^3-16.14mg/m^3$이였으며 연의량은 $0.250-3.975ug/m^3$로 나타났다.

  • PDF