• 제목/요약/키워드: 건축공사

검색결과 1,815건 처리시간 0.027초

A Study on the Accuracy Comparison of Object Detection Algorithms for 360° Camera Images for BIM Model Utilization (BIM 모델 활용을 위한 360° 카메라 이미지의 객체 탐지 알고리즘 정확성 비교 연구)

  • Hyun-Chul Joo;Ju-Hyeong Lee;Jong-Won Lim;Jae-Hee Lee;Leen-Seok Kang
    • Land and Housing Review
    • /
    • 제14권3호
    • /
    • pp.145-155
    • /
    • 2023
  • Recently, with the widespread adoption of Building Information Modeling (BIM) technology in the construction industry, various object detection algorithms have been used to verify errors between 3D models and actual construction elements. Since the characteristics of objects vary depending on the type of construction facility, such as buildings, bridges, and tunnels, appropriate methods for object detection technology need to be employed. Additionally, for object detection, initial object images are required, and to obtain these, various methods, such as drones and smartphones, can be used for image acquisition. The study uses a 360° camera optimized for internal tunnel imaging to capture initial images of the tunnel structures of railway and road facilities. Various object detection methodologies including the YOLO, SSD, and R-CNN algorithms are applied to detect actual objects from the captured images. And the Faster R-CNN algorithm had a higher recognition rate and mAP value than the SSD and YOLO v5 algorithms, and the difference between the minimum and maximum values of the recognition rates was small, showing equal detection ability. Considering the increasing adoption of BIM in current railway and road construction projects, this research highlights the potential utilization of 360° cameras and object detection methodologies for tunnel facility sections, aiming to expand their application in maintenance.

Framework and Core Competency of Integrated Design Management (IDM) (통합설계관리의 개념적 틀 및 역량강화 요소 - 건축과 플랜트를 중심으로 -)

  • Kim, Yesol;Jung, Youngsoo
    • Korean Journal of Construction Engineering and Management
    • /
    • 제15권1호
    • /
    • pp.122-133
    • /
    • 2014
  • Recent diversification of project delivery systems coupled with increasing mega-projects requires highly advanced construction management techniques. Among those techniques, procurement and design management are recognized as being the first priority for overseas construction projects. Nevertheless, previous research in design management has been limited to the quality management of the design documents at design stage. Therefore, it is necessary to explore the design management from a comprehensive perspective throughout the project life cycle. In this context, the purpose of this paper is to propose a conceptual framework for integrated design management (IDM). Several different concepts in relation to design management were investigated first in order to identify the major variables of the IDM framework. A comprehensive comparison of construction management methodologies was also analyzed in order to identify key factors of IDM. Finally, an IDM framework was proposed by combining those factors and relevant issues. Based on the proposed framework, a survey was conducted in order to validate the framework as well as to identity important areas for improving competitive capability of Korean construction companies.

A Study on the Structure Behavior of Dry-assembled Wall with Concrete Blocks subjected to Cyclic Lateral Load (콘크리트블록으로 건식조립된 벽체의 수평반복하중에 대한 구조거동 연구)

  • Lee, Joong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제21권6호
    • /
    • pp.440-447
    • /
    • 2020
  • Masonry structures are used as bearing walls in small buildings, but they are generally considered non-bearing walls. They are used as partition walls that divide the interior spaces of the frame structures of buildings. In addition, wetting techniques that use mortar as an adhesive between blocks or bricks in construction are vulnerable to climatic conditions, especially cracks in mortar, which can cause conduction collapse of the walls in seismic loading. The purpose of this research was to propose a dry concrete block construction method that complements the weak axial shear stiffness and improves the weakness of the wet construction method as well as to investigate its structural behavior. In this study, the material properties of concrete blocks were examined, and the seismic performance of the proposed dry assembly structure was verified by structural behavior tests on horizontal cyclic loads. First, in these study results, concrete blocks can be applied to the dry block construction method instead of wet construction methods because they secure more than C-type blocks in KS regulations. Second, the structural performance of the wall against a horizontal cyclic load indicates that the resisting force of the assembly block wall is increased by increasing the horizontal length of the wall, forming several diagonal cracks. Finally, the proposed dry block wall structure requires a seismic performance assessment considering that the ratio of the shape of the wall by height and length is considered a major influence variable on the structural behavior under a horizontal load.

Manufacturing artificial lightweight aggregates using coal bottom ash and its application to the lightweight-concretes (석탄 바닥재를 이용한 인공경량골재의 제조 및 경량 콘크리트에 적용)

  • Kim, Kang-Duk;Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • 제18권5호
    • /
    • pp.211-216
    • /
    • 2008
  • The artificial lightweight aggregate (ALA) was manufactured in a rotary kiln at $1125^{\circ}C$ using green body formed by pelletizing the batch powder composing of coal bottom ash (CBA) produced from power plant, clay and dredged soil (DS). The TCLP (Toxicity characteristic leaching procedure) results showed that the dissolution concentration of heavy metal ions of ALA fabricated in this study was below the limitation defined by the enforcement regulations of wastes management law in Korea. The ALA containing 60$\sim$70 wt% CBA had a bulk density of 1.45$\sim$1.49 and a water absorption of 17.2$\sim$18.5 %. The impact values for oven-dry state and saturated-surface dry state of ALA were 27.4$\pm$1.3 and 23.4$\pm$2.6 % respectively. The 28-days compressive strength of concrete made with various ALA was $22.7\sim27.8 N/mm^2$. The slump of concrete with ALA containing CBA 60 and 70 wt% were 7.9 and 14.3 cm respectively. The unit weight of concrete made with any ALA fabricated in this study was satisfied with the standard specifications of lightweight concrete for the civil engineering and construction presented by Korea as below $1.84 ton/m^3$.

Experimental Study on Field Applicability of Tightened Coupler with Two-Way Threading (양방향 나사산 체결방식을 활용한 완전밀착형 커플러의 시공성 분석)

  • Park, U-Yeol;Hong, Seong-Wook;Yang, Jin-Kook;Ko, Suck-Hwa;An, Sung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • 제14권1호
    • /
    • pp.87-93
    • /
    • 2014
  • A tightened coupler with two way-threading is suggested to overcome the previous one-way threaded coupler. The experiment and a mock-up test were conducted to analyze the constructability of the suggested coupler. The aim of the mock-up test was to assemble the suggested coupler in horizontal rebar of mat footing and vertical rebar of semi-fabricated column bars. The method using the suggested coupler in semi-fabricated column bars is developed by analyzing the problem of fabricated column bars using the one-way threaded coupler. The result of the mock-up test showed that the time required to assemble the suggested coupler in the horizontal bars is shorter than it is for the one-way threaded coupler. In addition, the method using the suggested coupler in semi-fabricated column bars has advantages such as lower working loads, supporting safe work and strongly tightening the rebar. From these results, it is revealed that the suggested coupler is adequate to use in rebar work in terms of cost, quality and time.

Quantification Model Development of Human Accidents based on the Insurance Claim Payout on Construction Site (건설공사보험 사례를 활용한 건설현장 인명사고 정량화 모델 개발)

  • Ha, Sun-Geun;Kim, Tae-Hui;Son, Ki-Young;Kim, Ji-Myong
    • Journal of the Korea Institute of Building Construction
    • /
    • 제18권2호
    • /
    • pp.151-159
    • /
    • 2018
  • Accident rate in the construction industry of South Korea is increasing every year, and it represents the highest percentage among industries. This shows that activities performed to prevent safety accidents in the country are not efficient when it comes to reduce the accident rate. In order to resolve this issue, a model for the prediction of human accidents should be established. In addition, it is required a quantification study based on pattern of human accidents. Therefore, the objective of this study is to quantify uncertainty of human accidents risk and predict how to change in various circumstances by using Monte Carlo Simulation. To achieve the objective, first, pattern of human accidents was defined. Second, insurance claim payout and information of human accidents during 14 years in construction site were collected. Third, descriptive analysis is conducted to determine the characteristics of the accident pattern. Fourth, to quantitatively analyze the pattern of the human accidents, the population of each accident occurrence and payout were estimated. Finally, estimated populations was analyzed according to characteristics of distribution by using Monte carlo simulation. In the future, this study can be used as a reference for developing the safety management checklist in construction site and development of prediction models of human accident.

Seismic Performance Evaluation and Economic Analysis of 5-Story RC Moment-Resisting Frames (5층 철근콘크리트 모멘트-저항골조 구조물의 내진성능 평가 및 공사원가 분석)

  • Kang, Suk-Bong;Kim, Sungdae;Park, Eu-Su;Oh, Sangmuk;Son, Kiyoung
    • Journal of the Korea Institute of Building Construction
    • /
    • 제15권6호
    • /
    • pp.569-577
    • /
    • 2015
  • Recently, the concept of seismic design has changed from prescriptive to performance based design. For the performance based design with the specified target performance of the structure, it is necessary to execute the inelastic structural analysis to predict precisely the actual behavior of the structure. To address this issue, the seismic performance of the 5-story RC moment-resisting frames designed in accordance with KBC2009 is evaluated through push-over analysis and economic analysis is conducted focused on the direct construction costs. The results show that the ordinary and the intermediate moment-resisting frame are evaluated to meet the required performance design criteria and that the direct construction costs of the two frames are similar. However, although the special moment-resisting frame designed with strong column-weak girder philosophy satisfies the required performance design criteria, the direct construction cost is uneconomical compared with other frames. Therefore, although the intermediate moment-resisting frame of design category D is prohibited in IBC2012, the ordinary and the intermediate moment-resisting frame are estimated to be more reasonable than the special moment-resisting frame for the design of 5-story RC moment-resisting frame.

Status of Economics Analysis Using LCC in Turn-Key Project : Focus on Landscape Architecture (설계시공일괄발주(턴키) 설계에서 LCC를 활용한 경제성 분석 실태: 조경분야를 중심으로)

  • Yoon, Yong-Han;Kim, Jeong-Ho
    • Journal of Environmental Policy
    • /
    • 제10권4호
    • /
    • pp.39-59
    • /
    • 2011
  • In this article, I would like to analyze the conditions in applying the LCC method for each construction type by selecting 10 apartment complexes among the Turn-key projects which have been ongoing for the last 5 years. In addition, this article will identify the problems to the application of double landscape architecture and suggest improvement measures. Among the 10 case targets, a total of 151 LCC analyses were conducted, and the average application ratio placing for each construction type was shown in the following order: architecture (34.4%)> electricity (21.2%)>machine (18.5%)>civil engineering (13.2%)>landscape architecture (12.6%). As numbers show, landscape architecture was the lowest. The ratio of LCC reduction amount was shown in the following order: machine (32.1%)> architecture (23.9%)>electricity (23.4%)>civil engineering (17.5%)>landscape architecture (3.1%). The field of landscape architecture had a reduction amount that was about 5 to 6 times lower than civil engineering which had a similar number of LCC analysis cases. The total LCC analysis items of landscape architecture was 19, including 15 double packing material, 1 building covering, 1 grass planting, 1 planting infrastructure, and 1 facility. The following measures were suggested to promote LCC analysis in landscape architecture: first, set an analysis item that considers the construction expense ratio of landscape architecture; second, legal regulation of landscape architecture and expansion of its application; third, prepare VE/LCC standards which are suitable for landscape architecture.

  • PDF

Development of the Purlin Hanging System Form for the Girder Bridge Slab and Economic Analysis (거더교 상판 콘크리트 타설용 거푸집 개발 및 경제성 분석)

  • Lim, Jeeyoung;Kim, Sunkuk;Son, Kiyoung
    • Journal of the Korea Institute of Building Construction
    • /
    • 제16권3호
    • /
    • pp.271-278
    • /
    • 2016
  • In the case of South Korea, steel girder bridge (steel box or H-steel) and PSC (Pre-Stressed Concrete) girder bridge are the representative upper structures of railroad and road bridges. These structures account for 75% of the total bridge constructions and 80% of the total construction cost. Since the form work for concreting bridge slab is difficult, various construction methods developed and applied. However, several problems in those methods did not solve partially, including cost increase by material loss and rise of labor costs, quality deterioration by unskilled workers, increased construction time by complicated method, reduced productivity, safety accident by high place work, difficult transportation by big member, and rise of maintenance cost by material characteristic. Alternative method is needed to solve problems of as-is methods. Therefore, the purpose of this study is development of the purlin hanging system form for the girder bridge slab and its economic analysis. Through the findings of this study, it was verified that the purlin hanging system form is possible 60% reduction in cost and 80% reduction in time as comparison with conventional method.

Suggestion for Non-Destructive Testing Equation to Estimate Compressive Strength of Early Strength Concrete (조기강도 콘크리트의 압축강도 추정을 위한 비파괴검사 실험식의 제안)

  • Lee, Tae-Gyu;Kang, Yeon-Woo;Choi, Hyeong-Gil;Choe, Gyeong-Choel;Kim, Gyu-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • 제16권3호
    • /
    • pp.229-235
    • /
    • 2016
  • In construction field, it used various technique for concrete formwork. Part of them, non-destructive test has been conducted to estimate a compressive strength of concrete easily such as rebound method and ultrasonic pulse velocity method etc. Former research has recommend proposed equation based on experimental data to investigate strength of concrete but it was sometimes deferent actual value of that from in field because of the few of data in case of early strength concrete. In this study, an experiment was conducted to analyze strength properties for early strength concrete using cylinder mold and $1,000mm{\times}1,000mm{\times}200mm$ rectangular specimen. And compressive strength of concrete was tested by non-destructive test, and calculated by the equation proposed former research. As a result, the non-destructive test results showed approximately 70 percent of the failure test value for all conditions, and worse reliability was obtained for high strength concrete samples when the ultrasonic pulse velocity method was used. Based on the scope of this study, the experimental equation for estimating compressive strength of early strength concrete from 24MPa to 60MPa was proposed.