• Title/Summary/Keyword: 건설 팩토리

Search Result 5, Processing Time 0.021 seconds

A Study on the Performance Evaluation System for the Construction Factory System Applied to High-Rise Building Construction in Korea (우리나라 초고층용(超高層用) 건설(建設)팩토리 개발(開發)을 위한 성능평가체계(性能評價體系)에 관(關)한 기초적(基礎的) 연구(硏究))

  • Choi, Won-Jun;Kim, Chang-Kyu;Song, In-Shick;Lim, Sang-Chae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.105-108
    • /
    • 2007
  • This study aims to develop a performance evaluation system for the Construction Factory(CF). The CF is a kind of full automation system for building construction which consists of the lifting system for building materials, the built-up unit for steel structural components, the bolting robots, the control center for the site management, and the site covering system. The CF is developing now as a project of the construction automation and robotics. In this study we firstly reviewed the state-of-the-art of the construction automation and robotics in the foreign and the domestic, and investigated the precedent case of the CF such as the SMART System of Shimizu Co., Japan. We believe that without an objective evaluation of the results there won't be growth in technological R&D. Therefore, this study sees the developing CF as an new technology and method in building construction, and proposes the direction and frame of the appropriate evaluation which can be applied into the CF.

  • PDF

A study on Improving the Level of Introduction of Smart Factories Using the Extended Innovation Resistance Model (확장된 혁신저항모델을 활용한 스마트 팩토리 도입 수준 제고에 대한 연구)

  • Park, Chan-Kwon
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.3
    • /
    • pp.107-124
    • /
    • 2021
  • This study is a study on the innovation resistance that may arise in connection with the introduction and use of smart factory-related technologies by SMEs. It is to study the effect of the leading factors of innovation resistance on innovation resistance and the effect of innovation resistance on use intention by using the extended innovation resistance model. A total of 176 survey data were used for the study, and the study was conducted using SPSS 25 and Smart PLS 2.0. Relative advantage, suitability, perceived risk, social impact, and organizational characteristics have a significant effect on innovation resistance, and innovation resistance was tested to have a significant effect on the intention to use. As an implication according to the research, a plan to improve the level of introduction and use of smart factories using the expanded innovative storage model was presented by dividing positive and negative factors, and factors that should be improved and factors that should be reduced are presented. It was specifically presented.

A Study on the Policy Direction for the Introduction and Activation of Smart Factories by Korean SMEs (우리나라 중소기업의 스마트 팩토리 수용 및 활성화 제고를 위한 정책 방향에 대한 연구)

  • Lee, Yong-Gyu;Park, Chan-Kwon
    • Korean small business review
    • /
    • v.42 no.4
    • /
    • pp.251-283
    • /
    • 2020
  • The purpose of this study is to provide assistance to the establishment of related policies to improve the level of acceptance and use of smart factories for SMEs in Korea. To this end, the Unified Technology Acceptance Model (UTAUT) was extended to select additional factors that could affect the intention to accept technology, and to demonstrate this. To achieve the research objective, a questionnaire composed of 7-point Likert scales was prepared, and a survey was conducted for manufacturing-related companies. A total of 136 questionnaires were used for statistical processing. As a result of the hypothesis test, performance expectation and social influence had a positive (+) positive effect on voluntary use, but effort expectation and promotion conditions did not have a significant effect. As an extension factor, the network effect and organizational characteristics had a positive (+) effect, and the innovation resistance had a negative effect (-), but the perceived risk had no significant effect. When the size of the company is large, the perceived risk and innovation resistance are low, and the level of influencing factors for veterinary intentions, veterinary intentions, and veterinary behaviors are excluded. Through this study, factors that could have a positive and negative effect on the adoption (reduction) of smart factory-related technologies were identified and factors to be improved and factors to be reduced were suggested. As a result, this study suggests that smart factory-related technologies should be accepted.

Route Optimization for Energy-Efficient Path Planning in Smart Factory Autonomous Mobile Robot (스마트 팩토리 모빌리티 에너지 효율을 위한 경로 최적화에 관한 연구)

  • Dong Hui Eom;Dong Wook Cho;Seong Ju Kim;Sang Hyeon Park;Sung Ho Hwang
    • Journal of Drive and Control
    • /
    • v.21 no.1
    • /
    • pp.46-52
    • /
    • 2024
  • The advancement of autonomous driving technology has heightened the importance of Autonomous Mobile Robotics (AMR) within smart factories. Notably, in tasks involving the transportation of heavy objects, the consideration of weight in route optimization and path planning has become crucial. There is ongoing research on local path planning, such as Dijkstra, A*, and RRT*, focusing on minimizing travel time and distance within smart factory warehouses. Additionally, there are ongoing simultaneous studies on route optimization, including TSP algorithms for various path explorations and on minimizing energy consumption in mobile robotics operations. However, previous studies have often overlooked the weight of the objects being transported, emphasizing only minimal travel time or distance. Therefore, this research proposes route planning that accounts for the maximum payload capacity of mobile robotics and offers load-optimized path planning for multi-destination transportation. Considering the load, a genetic algorithm with the objectives of minimizing both travel time and distance, as well as energy consumption is employed. This approach is expected to enhance the efficiency of mobility within smart factories.

A Study on the Technological Priorities of Manufacturing and Service Companies for Response to the 4th Industrial Revolution and Transformation into a Smart Company (4차 산업혁명 대응과 스마트 기업으로의 변화를 위한 제조 및 서비스 기업의 기술적용 우선순위에 대한 연구)

  • Park, Chan-Kwon;Seo, Yeong-Bok
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.4
    • /
    • pp.83-101
    • /
    • 2021
  • This study is to investigate, using AHP, what technologies should be applied first to Korean SMEs in order to respond to the 4th industrial revolution and change to a smart enterprise. To this end, technologies related to the 4th industrial revolution and smart factory are synthesized, and the classification criteria of Dae-Hoon Kim et al. (2019) are applied, but additional opinions of experts are collected and related technologies are converted to artificial intelligence (AI), Big Data, and Cloud Computing. As a base technology, mobile, Internet of Things (IoT), block chain as hyper-connected technology, unmanned transportation (autonomous driving), robot, 3D printing, drone as a convergence technology, smart manufacturing and logistics, smart healthcare, smart transportation and smart finance were classified as smart industrial technologies. As a result of confirming the priorities for technical use by AHP analysis and calculating the total weight, manufacturing companies have a high ranking in mobile, artificial intelligence (AI), big data, and robots, while service companies are in big data and robots, artificial intelligence (AI), and smart healthcare are ranked high, and in all companies, it is in the order of big data, artificial intelligence (AI), robot, and mobile. Through this study, it was clearly identified which technologies should be applied first in order to respond to the 4th industrial revolution and change to a smart company.