• Title/Summary/Keyword: 건설정보구조

Search Result 506, Processing Time 0.025 seconds

Development of Outdoor Augmented Reality Based 3D Visualization Application for Realistic Experience of Structures (구조물 실감 체험을 위한 야외 증강현실 기반의 3D 시각화 어플리케이션 개발)

  • Lee, Young-Jae;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.2
    • /
    • pp.305-310
    • /
    • 2015
  • Recently, as AR(Augmented Reality) technology develops, it is used in field of diverse industry and specially affects structures and human interaction in field of architecture. This paper proposes 3D visualization application for realistic experience of structures by using outdoor AR technology. Proposed application visualizes structures such as high buildings, bridges, ships, and so on to be constructed in future, considering ambient environment by using outdoor AR technology, provides precisely user structures after completing construction and offers more realistic information and immersion as compared with previous methods.

Control of Bending Behavior of Simple Beams Using CTMD (CTMD의 질량비에 따른 단순보의 휨거동 제어효과)

  • Heo, Gwang-Hee;Seo, Sang-Gu;Kim, Chung-Gil;Jeon, Seung-Gon;Kim, Min-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.12-18
    • /
    • 2021
  • The purpose of this study is to effectively mitigate the bending displacement that occurs in the bridge due to forced vibration. We developed CTMD (Combine Tuned Mass Damper) that combines the relationship between spring and mass to control the bending behavior of simple beams. The experiment was conducted to confirm the control effect according to the change in the mass ratio of the developed CTMD. The developed CTMD is designed and manufactured so that the mass ratio can be adjusted according to the characteristics of the bridge. The maximum load of the spring applied to CTMD was fixed at 33.15 N. In order to evaluate the performance of the developed CTMD, a simple beam composed of hinges and rollers as boundary conditions was fabricated. In the experimental method, a CTMD was installed in the center of a simple beam and the deflection displacement according to the mass ratio was measured. The shaking condition was shaken at 3 Hz to induce the maximum bending behavior of the simple beam. As a result of the experiment, it was confirmed that when the optimal mass ratio was 2.1, the damping rate of the bending behavior displacement was about 71.2 %, indicating the best control effect.

A Study on Automated Quantity Take-off Methods of Earth Works in Road Design using 3D Design Concept (3차원 설계를 통한 도로설계단계의 토공 자동물량 산정 방안에 관한 연구)

  • Cho, Myunhwan;Kim, Nakseok;Chae, Jae-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.2
    • /
    • pp.277-283
    • /
    • 2016
  • Recently, the interests in three-dimensional design and BIM(Building Information Modeling) are increasing in civil engineering sector and the researches about three-dimensional design and quantity take-off methods for civil engineering structures have been conducted. However, these studies are just carried out the 3D design and quantity calculation of civil structures on the road or railway such as bridges and tunnels. The study on the quantity take-off methods and the evaluation of calculated results on the earth works should be performed in more detail. Based on these backgrounds in mind, the study was conducted the three-dimensional road design and evaluated the quantity take-off results on the earth works using 3D calculation method(average end area method, prismoidal method and composit method). The calculated quantity from composit method showed about 5% error of measuring efficiency than the average end area method, and when reporting the quantity calculation of earth works, it is necessary to specify the calculation method using quantity take-off of earth works.

Non-recursive Path Model Analysis on the Relationship between Perceived Safety Management Activities and Safety of Construction Sites (건설현장의 지각된 안전관리 활동과 안전성과의 관계에 대한 비재귀 경로모형분석)

  • Yong Hoon Kim
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.786-794
    • /
    • 2022
  • In construction sites, effective preventive safety management is required beyond post-processing safety management. Purpose: The purpose of this study is to present a model and analyze the relationship between safety management activities, safety culture key elements, safety, unsafe behavior management, and safety for autonomous and preventive safety management. Method: The relationship was analyzed by applying the survey data to the structural equation, and the path to safety outcomes from exogenous variables was explored and major issues were presented by interpreting the part suggested by the hypothesis verified by the analysis results. Result: As a result of analyzing the preliminary model and the path model, the appropriate model fit was confirmed, and the significant effect of exogenous variables on endogenous variables was confirmed. Conclusion: It is judged that it can contribute to continuously improving safety performance before safety accidents occur through safety management activities, safety and unsafe behavior management, and management of key elements of safety culture.

Image-based Proximity Warning System for Excavator of Construction Sites (건설현장에 적합한 영상 기반 굴삭기 접근 감지 시스템)

  • Jo, Byung-Wan;Lee, Yun-Sung;Kim, Do-Keun;Kim, Jung-Hoon;Choi, Pyung-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.10
    • /
    • pp.588-597
    • /
    • 2016
  • According to an annual industrial accident report from Ministry of Employment of Labor, among the various types of accidents, the number of accidents from construction industry increases every year with the percentage of 27.56% as of 2014. In fact, this number has risen almost 3% over the last four years. Currently, among the industrial accidents, heavy machinery causes most of the tragedy such as collision or narrowness. As reported by the government, most of the time, both heavy machinery drivers and workers were unaware of each other's positions. Nowadays, however when society requires highly complex structures in minimal time, it is inevitable to allow heavy construction equipments running simultaneously in a construction field. In this paper, we have developed Approach Detection System for excavator in order to reduce the increasing number. The imaged based Approach Detection System contains camera, approach detection sensor and Around View Monitor (AVM). This system is also applicable in a small scale construction fields along with other machineries besides excavators since this system does not require additional communication infra such as server.

Response Analysis of Frame Structures with the Consideration of Tunnel Construction (프레임구조물의 터널시공에 따른 거동분석)

  • Son, Moorak;Park, Jaehyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3C
    • /
    • pp.121-127
    • /
    • 2012
  • This paper investigates the response of frame structures with the consideration of tunnel construction (ground loss) conditions. The response of four-story open frame structure and block-infilled frame structures, which are subjected to tunnelling-induced ground movements, has been investigated in different construction (ground loss) conditions using numerical analysis. The open frame structure has been modelled as an elastic structure, while the block-infilled frame structure has been modelled to have real cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The response of the two different frame structures has been investigated in terms of construction (ground loss) conditions considering the magnitude of deformations and cracks in structures. In addition, the damage levels, which are possibly induced in the structures, has been provided in terms of construction (ground loss) conditions using the state of strain damage estimation criterion (Son and Cording, 2005). The results of this study will provide a background for better understandings for controlling and minimizing building damage on nearby frame structures due to tunnelling-induced ground movements.

A Study on the Application Method of Facility Classification System for the Development of Asset Management System for Power Generation Structures (발전구조물의 자산관리 시스템 구축을 위한 시설물분류체계 활용방안에 관한 연구)

  • Jeon, Seokhyeon;Jeong, Jeongsik;Ahn, Jinhee;Kim, Changhak
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.2
    • /
    • pp.113-118
    • /
    • 2019
  • Recently, the maintenance concept of infrastructure has been changed from the stability management of the structure determined by the safety inspection of the existing facilities to the asset management related to evaluating and managing the performance of the facilities. For management of the property of the facilities, it is necessary to efficiently classify their information for the maintenance and service level of the facilities and to manage them. In the case of power plant facility, especially, it is a complex structure, which is constructed in a various component and detail. In this study, therefore, the components of power plant facility were classified into facilities, spaces, parts, and elements considering the type of integrated construction classification system in Korea. To reflect the deterioration rate of the facility in accordance with environmental conditions such as airborne salt and humidity etc., it was classified by adding direction, interior, and exterior condition of each component not to be considered in the existing classification system for its effective and systematic maintenance, since it is generally located in the coastal area due to the operation of the power generation structure. The classification system developed in this study can be used as fundamental data for development of the computer system for asset management of power plant facility.

Experimental study on structural integrity assessment of utility tunnels using coupled pulse-impact echo method (결합된 초음파-충격 반향 기법 기반의 일반 지하구 구조체의 건전도 평가에 관한 실험적 연구)

  • Jin Kim;Jeong-Uk Bang;Seungbo Shim;Gye-Chun Cho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.479-493
    • /
    • 2023
  • The need for safety management has arisen due to the increasing number of years of operated underground structures, such as tunnels and utility tunnels, and accidents caused by those aging infrastructures. However, in the case of privately managed underground utility ducts, there is a lack of detailed guidelines for facility safety and maintenance, resulting in inadequate safety management. Furthermore, the absence of basic design information and the limited space for safety assessments make applying currently used non-destructive testing methods challenging. Therefore, this study suggests non-destructive inspection methods using ultrasonic and impact-echo techniques to assess the quality of underground structures. Thickness, presence of rebars, depth of rebars, and the presence and depth of internal defects are assessed to provide fundamental data for the safety assessment of box-type general underground structures. To validate the proposed methodology, different conditions of concrete specimens are designed and cured to simulate actual field conditions. Applying ultrasonic and impact signals and collecting data through multi-channel accelerometers determine the thickness of the simulated specimens, the depth of embedded rebar, and the extent of defects. The predicted results are well agreed upon compared with actual measurements. The proposed methodology is expected to contribute to developing safety diagnostic methods applicable to general underground structures in practical field conditions.

Comparative analysis of ground settlement and tunnel displacement due to tunnel excavation considering topographic information based on GIS (GIS 기반 지형 정보를 고려한 터널 굴착에 따른 지반침하와 터널 변위 비교 분석)

  • Jae-Eun, Cho;Ye-Rim, Jung;Seong-Min, Song;Ji-Seok, Yun;Sang-Gui, Ha;Han-Kyu, Yoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.1
    • /
    • pp.13-26
    • /
    • 2023
  • Recently, as the development of underground spaces has become active due to rapid urbanization and population density, interest in the ground behavior according to the construction of underground spaces is increasing. In large cities with high population density and many buildings, ground subsidence has a great impact on structures and there may be a risk of collapse, so the analysis of ground behavior due to underground construction is essential. Previous studies have been conducted on the subsidence pattern of the surface and the deformation of the tunnel when constructing the tunnel, but analysis has rarely been conducted by using actual topographic information. Therefore, this study analyzed the difference in ground behavior between the actual topography and the flat topography. As a result, it was confirmed that ground settlement occurs at higher elevations, such as in mountainous topography, and when the numerical analysis is performed considering topographical information, the crown settlement of the tunnel is up to about approx. It showed a difference of 10 mm, and it was found that the sensitivity was less in the case of displacement of tunnel wall compared to the crown settlement and ground settlement. The numerical analysis considering the actual GIS-based topographic information presented in this study can be used to obtain more accurate surface subsidence data to understand the behavior of the upper structure due to tunnel excavation.

Development of IDM for BIM based Structural Steel Member Design (BIM 기반 철골부재 단면설계를 위한 IDM 개발)

  • Jung, Jong-Hyun;Lee, Jae-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1434-1440
    • /
    • 2015
  • IDM is a methodology for capturing and specifying processes and information flow during the life-cycle of a facility. The methodology can be used to document existing or new processes, and describe the associated information that need to be exchanged between parties. In this paper, the information model for BIM-based structural steel member design was defined using IDM methodology. The structural information offered in IFC was analyzed, and its adequacy was verified by applying the case study using Excel. As a result, $IFC2{\times}3$ offers the most structural design information for BIM-based structural steel member design, and some sectional properties omitted in $IFC2{\times}3$ were offered in IFC4. IDM methodology can be used effectively for developing BIM-based structural design systems.