• Title/Summary/Keyword: 건설연구개발

Search Result 4,473, Processing Time 0.031 seconds

An Experimental Study on the Structural Performance of Lateral Resistance in Steel Elevator Pit (강재엘리베이터 피트 측압저항 구조성능에 관한 실험적 연구)

  • Hong, Seong-Uk;Kim, Tae-Soo;Baek, Ki-Youl
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.1-8
    • /
    • 2019
  • Steel elevator pit was developed for the purpose of minimizing the excavation, simplifying the construction of the frame and economical efficiency by improving the problems that occurred in the existing reinforced concrete. It is common to apply conventional RC method through excavation to underground structures such as underground floor collector well and elevator pit. In recent years, the use of steel collector well and steel elevator pits to reduce construction costs by minimizing the materials of steel and concrete has been continuously increasing. The steel elevator pit is an underground structure and then the performance of the welding part and the structure system is important. Specimen with only steel plate and concrete without studs could support the load more than 3 times than the specimen with deck only. Therefore, even if there is no stud, the deck (steel plate) rib is formed and the effect of restraining the steel plate and the concrete during the bending action can be expected. However, since sudden fracture in the elevator pit may occur, stud bolt arrangement is necessary for the composite effect of steel plate and concrete. It is expected that the bending strength can be expected to increase by about 15% or more depending with and without stud bolts.

Mechanical Properties and Impact Resistance Review of Carbon Fiber Reinforced Cement Composites with Different Fiber Contents and Fiber Lengths (섬유혼입률 및 섬유길이 변화에 따른 탄소섬유 보강시멘트 복합재료의 역학적 특성과 내충격성 검토)

  • Heo, Gwang-Hee;Song, Ki-Chang;Park, Jong-Gun;Han, Yoon-Jung;Lim, Cae-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.86-95
    • /
    • 2019
  • Recently, the applications of carbon fiber have been broader than ever when it comes to such industrials as automobiles, ships, aerospace, civil engineering and architecture because of their lightweight-ness and high mechanical properties. This study analyzed mechanical properties and flexural behavior of carbon fiber reinforced cement composites(CFRC) with different fiber contents and fiber lengths, and also impact resistance by natural drop test on mortar specimens was compared and examined. In addition, contents of carbon fiber(CF) were varied by 0.5%, 1.0%, 2.0% and 3.0%. Fiber lengths was used for 6 mm and 12 mm, respectively. As a result of the test, the flow value was very disadvantageous in terms of fluidity due to the carbon fiber ball phenomenon, and the unit weight was slightly reduced. In particular, the compressive strength was decreased with increasing carbon fiber contents. On the other hand, the flexural strength was the highest with 12 mm fiber length and 2% fiber content. As the results of the impact resistance test, the specimens of plain mortar takes about 2~3 times to final fracture, while the specimens of CFRC is somewhat different depending on the increase of the fiber contents. However, when the fiber length is 12 mm and the fiber content is 2%, the impact resistance was the highest.

Quantitative analysis on the technical interoperability between railway systems for the operation of trans-continental railways (대륙철도 운행을 위한 기술적 상호운용성에 대한 계량적 분석)

  • Park, Su-Myung;Park, Eun-Kyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.645-652
    • /
    • 2018
  • Recently, as South Korea has joined the OSJD, the rules of the OSJD need to be applied to South Korea. Therefore, the railways are connected to the continent railway in terms of software, but the railway systems in neighboring countries have been developed and operated for a long time, and are quite different with some restrictions in terms of hardware. Therefore, this study analyzed the current railway systems of neighboring countries' based on the TSI used in Europe for technical interoperability. A real operation with the operation models within the specific route was assumed and vector functions for the Infrastructure vector & Rolling stock vector were produced. The IOP value was calculated by working out the interfacing matrix value between the infrastructure vector and rolling stock vector. As a result of calculating the IOP in a specific route, which is from Busan South Korea to Vladivostok with the diesel locomotive hauling freight cars, the value was only 22%, which is fairly low in terms of the interoperability. In other words, there are 77.8% restricting items preventing their interoperability. Such restricted causes should be improved to increase the technical interoperability in the long term. Moreover, and when railway systems are constructed and manufactured, it is important to keep IOP 100% to increase the operating efficiency in continental railways.

Seismic Reliability Analysis of Offshore Wind Turbine with Twisted Tripod Support using Subset Simulation Method (부분집합 시뮬레이션 방법을 이용한 꼬인 삼각대 지지구조를 갖는 해상풍력발전기의 지진 신뢰성 해석)

  • Park, Kwang-Yeun;Park, Wonsuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.125-132
    • /
    • 2019
  • This paper presents a seismic reliability analysis method for an offshore wind turbine with a twisted tripod support structure under earthquake loading. A three dimensional dynamic finite element model is proposed to consider the nonlinearity of the ground-pile interactions and the geometrical characteristics of the twisted tripod support structure where out-of-plane displacement occurs even under in-plane lateral loadings. For the evaluation of seismic reliability, the failure probability was calculated for the maximum horizontal displacement of the pile head, which is calculated from time history analysis using artificial earthquakes for the design return periods. The application of the subset simulation method using the Markov Chain Monte Carlo(MCMC) sampling is proposed for efficient reliability analysis considering the limit state equation evaluation by the nonlinear time history analysis. The proposed method can be applied to the reliability evaluation and design criteria development of the offshore wind turbine with twisted tripod support structure in which two dimensional models and static analysis can not produce accurate results.

Propagation of Tsunamis Generated by Seabed Motion with Time-History and Spatial-Distribution: An Analytical Approach (시간이력 및 공간분포를 지닌 지반운동에 의한 지진해일 발생 및 전파: 해석적 접근)

  • Jung, Taehwa;Son, Sangyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.263-269
    • /
    • 2018
  • Changes in water depth caused by underwater earthquakes and landslides cause sea surface undulations, which in turn propagate to the coast and result in significant damage as wave heights normally increase due to the wave shoaling process. Various types of numerical models have been developed to simulate the generation and propagation of tsunami waves. Most of tsunami models determine the initial surface of the water based on the assumption that the movement of the seabed is immediately and identically transmitted to the sea surface. However, this approach does not take into account the characteristics of underwater earthquakes that occur with time history and spatial variation. Thus, such an incomplete description on the initial generation of tsunami waves is totally reflected in the error during the simulation. In this study, the analytical solution proposed by Hammack (1973) was applied in the tsunami model in order to simulate the generation of initial water surface elevation by the change of water depth with time history and its propagation. The developed solution is expected to identify the relationship among various type of seabed motions, initial surface undulations, and wave speeds of elevated water surfaces.

Analysis of the Behavior Characteristics of Pile Foundations Responding to Ground Deformation (지반 변형 대응형 말뚝 기초의 거동 특성 분석)

  • Lee, Junwon;Shin, Sehee;Lee, Haklin;Kim, Dongwook;Lee, Kicheol
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.21-32
    • /
    • 2020
  • As the global large-scale infrastructure construction market expands, the construction of civil engineering structures in extreme environments such as cold or hot regions is being planned or constructed. Accordingly, the construction of the pile foundation is essential to secure the bearing capacity of the upper structure, but there is a concern about loss of stability and function of the pile foundation due to the possibility of ground deformation in extreme cold and hot regions. Therefore, in this study, a new type of pile foundation is developed to respond with the deformation of the ground, and the ground deformation that can occur in extreme cold and hot region is largely divided into heaving and settlement. The new type of pile foundation is a form in which a cylinder capable of shrinkage and expansion is inserted inside the steel pipe pile, and the effect of the cylinder during the heaving and settlement process was analyzed numerically. As a result of the numerical analysis, the ground heaving caused excessive tensile stress of the pile, and the expansion condition of the cylinder shared the tensile stress acting on the pile and reduced the axial stress acting on the pile. Ground settlement increased the compressive stress of the pile due to the occurrence of negative skin friction. The cylinder must be positioned below the neutral point and behave in shrinkage for optimum efficiency. However, the amount and location of shrinkage and expansion of cylinder must comply with the allowable displacement range of the upper structure. It is judged that the design needs to be considered.

Evaluation of Reinforcing Performance of Window Protection Device Against Strong Wind (강풍에 대비한 창호보호장치의 보강성능 평가)

  • Park, Won Bin;Kim, Hong Jin
    • Journal of the wind engineering institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.155-161
    • /
    • 2018
  • In modern society, damage caused by strong winds such as typhoons is expected to increase due to urbanization and global warming. In order to test the reinforcement performance of the newly developed window protection device, two-point force test and uniformly distributed load test were carried out on non-reinforced plate glass. It reinforcement performance of the window protection device was evaluated based on the flexural performance improvement. The analytical performance of the window protection device was evaluated by analysis using differential equations of elastic loading method and deflection curve and Midas-Gen. First, the analytical window protection device was evaluated by formulae derived using differential equations of elastic loading and deflection curve. The validity of the derived formulae investigated by comparing the maximum deflection of the central part of the plate with the experimental value and the theoretical value at maximum load. Then the results were compared with those by finite element FE method using Midas-Gen. Under the experimental conditions, with the window protection device, stress reduction effect up to 40% and deflection reduction up to 71.4% under the same load were obtained. It was also found that it is advantageous to perform the FE analysis using the plate element when the performance is evaluated because the error of FE analysis result using plate elements is far less than that using beam elements.

CycleGAN Based Translation Method between Asphalt and Concrete Crack Images for Data Augmentation (데이터 증강을 위한 순환 생성적 적대 신경망 기반의 아스팔트와 콘크리트 균열 영상 간의 변환 기법)

  • Shim, Seungbo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.171-182
    • /
    • 2022
  • The safe use of a structure requires it to be maintained in an undamaged state. Thus, a typical factor that determines the safety of a structure is a crack in it. In addition, cracks are caused by various reasons, damage the structure in various ways, and exist in different shapes. Making matters worse, if these cracks are unattended, the risk of structural failure increases and proceeds to a catastrophe. Hence, recently, methods of checking structural damage using deep learning and computer vision technology have been introduced. These methods usually have the premise that there should be a large amount of training image data. However, the amount of training image data is always insufficient. Particularly, this insufficiency negatively affects the performance of deep learning crack detection algorithms. Hence, in this study, a method of augmenting crack image data based on the image translation technique was developed. In particular, this method obtained the crack image data for training a deep learning neural network model by transforming a specific case of a asphalt crack image into a concrete crack image or vice versa . Eventually, this method expected that a robust crack detection algorithm could be developed by increasing the diversity of its training data.

Evaluation on Side Resistance of Drilled Shafts Constructed on Sandy Gravel and Gravel Layers in Nakdong River Estuary (낙동강 하구 모래 자갈 및 자갈층에 시공된 현장타설말뚝의 주면마찰력 평가)

  • Dong-Lo Choi;Tae-Hyung Kim;Byeong-Han Jeon;Jun-Seo Jeon;Chea-Min, Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.1-10
    • /
    • 2023
  • Recently, numerous structures have been constructed near the Nakdong river estuary, with pile foundations embedded in sand and gravel layers. In this study, the side resistance for six drilled shafts embedded in that region was evaluated based on the results of bi-directional and static axial compressive pile load tests. Subsequently, these results were compared with the side resistance calculated using domestic and foreign design codes such as FHWA (1999), KDS (2021), and AIJ (2004). Based on the test results, the evaluated side resistances ranged from 120 to 444kPa. However, the estimated values obtained from the design codes ranged from 69.3 to 170kPa, which were less than 50% of the evaluated values. It was observed that the empirical methods and correlations used in design codes provide a conservative estimation of the side resistance for drilled shafts embedded in sand and gravel layers. It implies that a suitable domestic approach should be developed to accurately estimate the side resistance of pile in sandy gravel and gravel layers near the Nakdong river estuary.

Developing an Occupants Count Methodology in Buildings Using Virtual Lines of Interest in a Multi-Camera Network (다중 카메라 네트워크 가상의 관심선(Line of Interest)을 활용한 건물 내 재실자 인원 계수 방법론 개발)

  • Chun, Hwikyung;Park, Chanhyuk;Chi, Seokho;Roh, Myungil;Susilawati, Connie
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.667-674
    • /
    • 2023
  • In the event of a disaster occurring within a building, the prompt and efficient evacuation and rescue of occupants within the building becomes the foremost priority to minimize casualties. For the purpose of such rescue operations, it is essential to ascertain the distribution of individuals within the building. Nevertheless, there is a primary dependence on accounts provided by pertinent individuals like building proprietors or security staff, alongside fundamental data encompassing floor dimensions and maximum capacity. Consequently, accurate determination of the number of occupants within the building holds paramount significance in reducing uncertainties at the site and facilitating effective rescue activities during the golden hour. This research introduces a methodology employing computer vision algorithms to count the number of occupants within distinct building locations based on images captured by installed multiple CCTV cameras. The counting methodology consists of three stages: (1) establishing virtual Lines of Interest (LOI) for each camera to construct a multi-camera network environment, (2) detecting and tracking people within the monitoring area using deep learning, and (3) aggregating counts across the multi-camera network. The proposed methodology was validated through experiments conducted in a five-story building with the average accurary of 89.9% and the average MAE of 0.178 and RMSE of 0.339, and the advantages of using multiple cameras for occupant counting were explained. This paper showed the potential of the proposed methodology for more effective and timely disaster management through common surveillance systems by providing prompt occupancy information.