• Title/Summary/Keyword: 건설부산물

Search Result 212, Processing Time 0.03 seconds

Theoretical Proposal for the Mix Design of Recycled Cement Utilizing Inorganic Construction Wastes (무기계 건설폐기물을 이용한 재생시멘트 배합설계에 관한 이론적 제안)

  • Kim, Ji-Hoon;Tae, Sung-Ho;Song, Hun;Shin, Hyeon-Uk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.250-258
    • /
    • 2016
  • Until now, the construction material industry has been recognized as a typical environmental destruction industry. However, recently, in order to reduce $CO_2$ emission, the main cause of environmental problems, lots of studies have been done about recycling industrial by-products and construction wastes. Therefore, the purpose of this study is to confirm whether it is possible to use as an alternative material in cement production process as a part of the development of recycled cement using an inorganic construction waste. For this study, the inorganic construction wastes was collected and analyzed each chemical component by XRF(X-ray Fluorescene). Also, the inorganic construction wastes were combined based on the chemical component of the cement, to perform this analysis. As a result, when the inorganic construction wastes was properly combined, it is possible to consider the development of the recycled cement used the inorganic construction wastes.

Properties of Engineering and Durability Concrete with Fly-ash and Blast Furnace Slag in Normal Strength Level (플라이애시 및 고로슬래그 첨가율에 따른 일반강도영역 콘크리트의 공학적 특성 및 내구성)

  • Kim, Gyu-Yong;Shin, Kyoung-Su;Lim, Chang-Hyuk;Nam, Jeong-Soo;Kim, Moo-Han
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.103-110
    • /
    • 2010
  • Recently, reducing usage of cement and using by-product of industry such as blast furnace slag and fly-ash have been increased to reduce $CO_2$ gas emission. That apply to construction. As a result, reduction of environmental stress and recycling of resources are expected. In this study, as basic study to the reuse of resources and reduce Environmental Load, comparing and analyzing hardening characteristics and durability as using the blast furnace slag and fly-ash, examining concrete characteristics substituted the three elements for the blast furnace slag and fly-ash and evaluating the relationship as binder. Through this, it want to provide the basic data for mass utilization. Blast furnace slag powder and replaced at fly-ash compressive strength of concrete in the strength of the initial seven days material age lower level of expression significantly compared to the concrete, but, 28 days after the similar or higher compressive strength than the concrete expression of the was. In addition, the reserves replacement of blast furnace slag powder salt injury increasing resistance are seen improvements, according to the conventional blast furnace slag powder study by the chloride ions on the surface of the concrete are improved being fixation salt injury resistance is considered.

  • PDF

A Experimental Study on the Ready-mixed Shotcrete Using Granulated Blast Furnace Slag (고로슬래그 미분말을 혼입한 레디믹스트 숏크리트의 현장적용성에 관한 실험적 연구)

  • Choi, Hee-Sup;Kim, Dong-Min;Jang, Pil-Sung;Seo, Sin-Seuk
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.6
    • /
    • pp.31-45
    • /
    • 2009
  • The aim of this study is to evaluate the applicability of Granulated Blast Furnace Slag to the development of the Powdered Ready-mixed Shotcrete. First of all, after accomplishing SEM analysis and Leaching Test, the laboratory and field experiments for evaluating the utility of Granulated Blast Furnace Slag were performed. As a result of SEM and Leaching test, the environmental stability was confirmed. That is, non-detection of harmful lists and dense shotcrete structure result from mixing Granulated Blast Furnace Slag. As a result of lab. and field test, Blast Furnace Slag is superior to Plain Batch in improving strength and durability. And it will be able to improve to some extent the problem caused by the delayed reaction of existing Granulated Blast Furnace Slag with alkali activated material. Also the proper amount of Granulated Blast Furnace Slag is estimated to be under 30%. Finally, it is possible that Granulated Blast Furnace Slag can apply to economical recycling and development of the Ready-mixed Shotcrete for its price is only about 5% of Silica-finne's price.

Strength Characteristic and Color Difference Analysis of Cement Mortar According to the Amount of Liquefied Red Mud (액상화 레드머드의 첨가량에 따른 시멘트 모르타르의 강도특성 및 색차 분석)

  • Kang, Suk-Pyo;Kang, Hye-Ju
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.146-152
    • /
    • 2018
  • In the construction sector, new demands for aesthetics are increasing due to structural stability and improvement of living standard and consciousness level. On the other hand, Red Mud sludge is generated from aluminum hydroxide extraction process from Bauxite. Red mud sludge contains about 20% of $Fe_2O_3$ and represents a natural reddish brown. It is highly applicable to the construction industry. In this paper, red mud sludge with a water content of 50%, which is a by - product of the industry, was prepared as a liquid phase. The liquefied red mud was added to cement mortar and the strength and color difference of cement mortar were investigated according to the addition amount of liquefied red mud. As a result, the compressive strength decreased with increasing amount of liquefied red mud. The color of cement mortar containing liquefied red mud was found to be distributed in the range of YR series in all samples. As the amount of liquefied red mud increased, the color became darker.

Economic Benefits of An Application of Construction Debris Units in Housing Environment Amelioration Area (주거환경개선지구 건축물해체 시 발생원단위 적용의 경제성 효과)

  • Hwang, Hyun-Seung;Son, Byeung-Hun;Park, Sang-Min;Hong, Won-Hwa
    • Journal of the Korean housing association
    • /
    • v.20 no.3
    • /
    • pp.77-84
    • /
    • 2009
  • The construction debris has been enormously increased since 90's because of a reconstruction and developing a new building site. Under the construction law, construction debris must legally recycle or reclaim at cost, but almost people have depended on reclamation of the illegal process to treat construction debris. Therefore, the environmental disruption and contamination have been begun the hot issue of society and in controversy with residents. With the consequence that indicates a substitute about an application of construction debris units is the most important thing for studying construction debris of quantity when the construction units are demolished. Nowadays, the area under the housing environment amelioration policies is getting rapidly old, then it is beyond anticipating reconstruction. Before construction units are demolished, generally three of four engineers investigate or predict the quantity of construction debris for two months. But this study is using the units of construction debris instead of the investigation and gets more precise data than investigation or prediction. In conclusion, the purpose of this study offers that units of construction debris can alternate the investigating of construction debris and curtail the expenses of labors and finances. Finally, those effects are going to make economical benefits covering the whole of the process of constructions.

A Study on the Economic Benefits after an Application of Construction Waste Units in Housing Environment Amelioration Policies (주거환경개선사업 건축물 해체 시 발생원단위 적용의 경제성 효과에 관한 연구)

  • Hwang, Hyun-Seung;Son, Byeung-Hun;Hong, Won-Hwa
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2008.11a
    • /
    • pp.266-270
    • /
    • 2008
  • The construction wastes have been enormously increased after 90's, but construction wastes have depended on reclamation, therefore the environmental disruption and contamination are getting in the hot issue of society and in controversy with residents. With the consequence that indicates a substitute about an application of construction waste units is the most important thing for studying construction wates of quantity when the construction units are demolished. Nowadays, the area under the housing environment amelioration policies is getting rapidly old, then it is beyond anticipating reconstruction. Likewise, it is common when the process of construction wastes make progress to investigate uneconomically in point of facts, therefore to derive economical effects using construction wastes units should be urgent as soon as possible. In conclusion, the purpose of this study offers the variety of construction wastes and process of treatments, comparison of which the construction is demolished and economical effects of application of construction units.

  • PDF

An Experimental Study on the Properties of Concrete Substituting the Rapid Chilled Steel Slag for Fine Aggregate (잔골재를 급냉제강(急冷製鋼)슬래그로 대체(代替)한 콘크리트의 특성(特性)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Kim, Nam-Wook;Park, Min-Wook;Bae, Ju-Seong
    • Resources Recycling
    • /
    • v.17 no.1
    • /
    • pp.73-79
    • /
    • 2008
  • Along with the increased social infrastructures and reconstruction, the demand for aggregate, which is used in concrete, has rapidly increased. However, there are problems due to the exhaustion of natural aggregate resources, and strict restrictions. In this study, the possibility of using rapid chilled steel slag as a substitutive material of fine aggregate is determined from the property test and mechanical test for the concrete that is made with rapid chilled steel slag, which highly decreases the free CaO, the main problem of the steel slag.

Evaluation of Structural Performance of Steel Fiber Reinforced Concrete Beams using Industrial By-products and Recycled Fine Aggregates (산업부산물과 순환잔골재를 적용한 강섬유 보강 철근콘크리트 보의 구조성능 평가)

  • Ha, Gee-Joo;Yi, Dong-Ryul;Ha, Jae-Hoon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.11
    • /
    • pp.11-18
    • /
    • 2018
  • In this study, seven R/C beams, designed by the steel fiber with ground granulated blast furnace slag and recycled fine aggregate were constructed and tested under monotonic loading. In the material development, micromechanics was adopted to properly select the optimized range of the composite based on steady-state cracking theory and experimental studies on the matrix and interracial properties. Experimental programs were carried out to improve and evaluate the structural performance of the test specimens: the load-displacement, the failure mode, the maximum strength were assessed. Test results showed that test specimens (BSSR-20, 40, 60, 80) were increased the maximum load carrying capacity by 2~9% and the ductility capacity by 10~22% in comparison with the standard specimen (BSS) respectively. And the specimens (BSSR-100) was decreased the maximum load carrying capacity by 5% and the ductility capacity by 44% in comparison with the standard specimen (BSS) respectively.

Carbonation Evaluation After CO2 Curing of Concrete Bricks Using Industrial by-products (산업부산물을 사용한 콘크리트 벽돌의 CO2 양생 후 탄산화 평가 )

  • Hoon Moon;Namkon Lee;Jung-Jun Park;Gum-Sung Ryu;Gi-Joon Park;Indong Jang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.373-380
    • /
    • 2023
  • This study investigated the carbonation of concrete brick cured in a CO2 environment for the utilization of CO2 captured in power plants. Concrete brick specimens were produced with electric arc furnace reducing slag (ERS) and electric arc furnace oxidizing slag (EOS), and cured for 3 days in a CO2 chamber with a concentration of 20 % or in a constant temperature and humidity chamber. The weight change, compressive strength, flexural strength and carbonation depth of concrete bricks were measured. From the results, it was found that when subjected to CO2 curing, CO2 was absorbed at the level of 2.4 % of the weight of the specimen. The specimen incorporating ERS showed the highest carbonation depth, and satisfied KS F4004 standards for the concrete brick. Therefore, it is expected that the captured CO2 can be utilized in the CO2 curing process of concrete brick.

II. 윤활기유 공정 및 제품소개

  • 이두원
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1986.06a
    • /
    • pp.10-20
    • /
    • 1986
  • I. 윤활기유 제조시설소개 개요 1) 고급 윤활기유(HVI)생산공장으로서 그간 수입에만 의존하던 최고급 품질의 기유를 국내 수요업체에 안정공급 2) 세계 최신 공정인 Gulf Lube Oil Hydrotreating Process Type III (수소첨가 개질공정)채택 3) 국내 최초일뿐 아니라, 세계에서도 일본, 카낟에 이어 3번째로 건설 1. 고품질 제품 생산-고점도 지수, 산화안정성 및 열안정성 우수, 잔류탄소분, 윤황분, 질소분 극소, 방향족 성분 및 회분 극소, 색상 양호 2. 첨가제(특히 산화방지제 및 점도 지수 향상제)사용효과 상승으로 완제품 생산시 생산비 감소 3. 동일 VI 제품 생산기준 수율이 높음 - Hydrocarbon Structure 변화로 원료 유중 부적합성분의 윤활기유화 4. Severity 조절로 Production Mode 변경 용이 5. 양질의 부산물 생산 - HDT Naphtha, Middle distillate 6. 용제 추출기유는 원유종류 및 성상에 따라 제품특성이 결정되나, 사용가능 원유가 다양 하면서도 제품특성 및 품질이 일정함.

  • PDF