• Title/Summary/Keyword: 건설기술인

Search Result 8,830, Processing Time 0.035 seconds

Parameter Calibration of Storage Function Model and Flood Forecasting (2) Comparative Study on the Flood Forecasting Methods (저류함수모형의 매개변수 보정과 홍수예측 (2) 홍수예측방법의 비교 연구)

  • Kim, Bum Jun;Song, Jae Hyun;Kim, Hung Soo;Hong, Il Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.39-50
    • /
    • 2006
  • The flood control offices of main rivers have used a storage function model to forecast flood stage in Korea and studies of flood forecasting actively have been done even now. On this account, the storage function model, which is used in flood control office, regression models and artificial neural network model are applied into flood forecasting of study watershed in this paper. The result obtained by each method are analyzed for the comparative study. In case of storage function model, this paper uses the representative parameters of the flood control offices and the optimized parameters. Regression coefficients are obtained by regression analysis and neural network is trained by backpropagation algorithm after selecting four events between 1995 to 2001. As a result of this study, it is shown that the optimized parameters are superior to the representative parameters for flood forecasting. The results obtained by multiple, robust, stepwise regression analysis, one of the regression methods, show very good forecasts. Although the artificial neural network model shows less exact results than the regression model, it can be efficient way to produce a good forecasts.

Development of Customer Safety Model of Unsignalized Intersections on the Community Road (생활도로내 비신호교차로 이용자 안전도 모형 개발 - 서울시 생활도로내 비신호교차로를 중심으로 -)

  • Lee, Hyeong Rok;Chang, Il Joon;Lee, Soo Beom;Kim, Jang Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3D
    • /
    • pp.205-213
    • /
    • 2010
  • The unsignalized intersections in a community road in the city of Seoul have 3,753 traffic accidents(9%) of total 41,702 cases in 2008, not high in the occurrence rate of traffic accidents, but seem to have a quite high potential of accidents due to the unreasonable and insufficient operation of systems and facilities in the part of traffic foundations. In particular, the un-signalized intersections in a community road have an insufficient measure for safety as compared to the crossroads with signals, and there are few analysis of traffic accidents and domestic researches on the model of affecting factors. Our country also has no concept of passing priority in operating a crossroad without signals, differently from foreign countries, so the researches and safety measures for improving the safety of a crossroad without signals in a community road are urgent. Therefore, this research has developed a safety model for a crossroad without signals in a community road based on the safety image data collected through individual interviews and questionnaires for the users of unsignalized intersections in a community road, and confirmed that legal systems, road facilities, personal factors, etc. have the biggest effect on the safety of drivers. It was confirmed that the clarity of passing methods, establishment of legal systems, etc. have the biggest effect on safety in order to raise the safety of unsignalized intersections in a community road, which drivers desire.

Nonlinear Analysis of CFT Truss Girder with the Arch-shaped Lower Chord (아치형상의 하현재를 갖는 CFT 트러스 거더의 재료 비선형 해석)

  • Song, Na-Young;Choung, Chul-Hun;Kim, Young-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6A
    • /
    • pp.625-639
    • /
    • 2009
  • Experimental and analytical studies are performed on the mechanical behavior of concrete-filled tubular(CFT) truss girders for different f/L ratios. Bending tests are conducted on two CFT truss girder specimens to determine fundamental structural characteristics such as the strength and deformation properties. Nonlinear material models for CFT members subjected to an axial compressive force are compared in this paper by using the nonlinear finite element program, ABAQUS. Previous researchers have proposed several nonlinear stress-strain models of confined concrete. In this study, the nonlinear analyses are performed applying several stress-strain models for confined concrete proposed by Mander, Sakino, Han, Susantha and Ellobody, and the results are compared with the experimental results in terms of load-deflection and load-strain relationships. Based on the comparisons of the load-deflection relationships, the models proposed by Mander and Susantha provide a maximum load about 12.0~13.8% higher and that by Sakino gives a maximum load about 7.6% higher than the experimental results. The models proposed by Han and Ellobody give a maximum load only about 0.2~1.2% higher than the test results, showing the best agreement among the proposed stress-strain models. However, the load-strain relations predicted by the existing models generally provide conservative results exhibiting larger strains than the experimental data.

The Quality Properties of Self Consolidating Concrete Using Lightweight Aggregate (경량골재를 사용한 자기충전 콘크리트의 품질 특성)

  • Kim, Yong Jic;Choi, Yun Wang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.573-580
    • /
    • 2010
  • This paper presents the development of self-consolidating concrete (SCC) using lightweight aggregates. SCC using Lightweight aggregate properties have been evaluated in terms of flowability, segregation resistance and filling capacity of fresh concrete as per the standards of the Japanese Society of Civil Engineering (JSCE). The measurement of the mechanical properties of hardened SCC using lightweight aggregate, including compressive strength, splitting tensile strength, elastic moduli and density, as well as its dry shrinkage and carbonation properties were also carried out. The characteristics of SCC using lightweight aggregate at the fresh state showed that as the use of the lightweight aggregate, the flowability improves without exception of Mix No. 9 but the segregation resistance tends to decrease without exception of Mix No. 3, 4 and 5. The 28 days compressive strength of the SCC using lightweight aggregate was found to be 30 MPa or higher. The relationship between the compressive strength and the splitting tensile strength was found to be similar to the expression presented by CEB-FIP, and the relationship between the compressive strength and the elastic moduli was found to be similar to the expression suggested by ACI 318-08 which takes into consideration the density of concrete. The density of the SCC using lightweight aggregate decreased by up to 26% compared to that of the control SCC. Also, The dry shrinkage and carbonation depth of the SCC using lightweight aggregate increased compared to that of the control SCC.

A Study on Risks in China's Foreign Invested Water BOT Projects (중국 외국인투자 수처리 BOT 사업 리스크 연구)

  • Lee, Seungho;Choi, Jae-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3D
    • /
    • pp.295-302
    • /
    • 2010
  • Since the late 1990s, the BOT mode in China has been extensively used in the water sector in order to attract private investment, improve technical and operational efficiency, and expand the coverage of water services. The BOT mode has been hailed as this provides a win-win structure between the government and private players through formalized procedures and an optimal risk allocation. However, recent market analyses show that some foreign investors are reluctant to participate in the market or even retreat due to uncertainties and risks in the market. This study aims to explore various risks in the Chinese water BOT market based on the thorough literature review, fieldwork, and the case studies on the two wholly foreign-owned BOT water projects: the Chengdu No. 6 and the Shanghai Dachang Water Supply BOT projects. The research results indicate that the Chinese BOT market embraces high risks in political, institutional and legal, and financial systems. The key to a successful takeoff of the BOT mode in the Chinese water market depends on the extent to which the government will be able to remove risky factors in political, institutional and legal, and financing systems. This research outcome will provide a useful reference to the Korean construction companies which consider expanding business to overseas water markets in the form of public private partnership.

GIS-based Spatial Zonations for Regional Estimation of Site-specific Seismic Response in Seoul Metropolis (대도시 서울에서의 부지고유 지진 응답의 지역적 예측을 위한 GIS 기반의 공간 구역화)

  • Sun, Chang-Guk;Chun, Sung-Ho;Chung, Choong-Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1C
    • /
    • pp.65-76
    • /
    • 2010
  • Recent earthquake events revealed that severe seismic damages were concentrated mostly at sites composed of soil sediments rather than firm rock. This indicates that the site effects inducing the amplification of earthquake ground motion are associated mainly with the spatial distribution and dynamic properties of the soils overlying bedrock. In this study, an integrated GIS-based information system for geotechnical data was constructed to establish a regional counterplan against ground motions at a representative metropolitan area, Seoul, in Korea. To implement the GIS-based geotechnical information system for the Seoul area, existing geotechnical investigation data were collected in and around the study area and additionally a walkover site survey was carried out to acquire surface geo-knowledge data. For practical application of the geotechnical information system used to estimate the site effects at the area of interest, seismic zoning maps of geotechnical earthquake engineering parameters, such as the depth to bedrock and the site period, were created and presented as regional synthetic strategy for earthquake-induced hazards prediction. In addition, seismic zonation of site classification was also performed to determine the site amplification coefficients for seismic design at any site and administrative sub-unit in the Seoul area. Based on the case study on seismic zonations for Seoul, it was verified that the GIS-based geotechnical information system was very useful for the regional prediction of seismic hazards and also the decision support for seismic hazard mitigation particularly at the metropolitan area.

Interactions between pre-existing large pipelines and a new tunnel (기존 대구경 파이프라인과 신설터널간의 상호작용)

  • Jeong, Sun-Ah;Choi, Jung-In;Hong, Eun-Soo;Chun, Youn-Chul;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.2
    • /
    • pp.175-188
    • /
    • 2009
  • When a new tunnel is excavated by the drill and blast method near pre-existing underground structures or tunnels due to the region restricted condition such as urban area, the ground will be relaxed by the excavation. In this case, issues can be created in terms of stability of pre-existing underground structures. One of major factors determining the stability of pre-existing underground structures can be a separation distance between pre-existing underground structures and a newly excavated tunnel. The region of ground relaxation defined by the plastic zone due to new excavation can be varied by separation distance. In this study, in other to estimate an influence of new tunnel excavation in terms of separation distance on the stability of pre-existing large pipelines, two-dimensional scaled model tests using plaster were performed for six models which have a different separation distance, The results show that based on the analysis of induced displacement during tunnel construction, the displacement decreases as the separation distance between large pipeline and new tunnel is increased until the distance is 2.5 times of pipeline diameter. Beyond this point, however, the displacement has become stabilized.

Evaluation of Extreme Rainfall based on Typhoon using Nonparametric Monte Carlo Simulation and Locally Weighted Polynomial Regression (비매개변수적 모의발생기법과 지역가중다항식을 이용한 태풍의 극치강우량 평가)

  • Oh, Tae-Suk;Moon, Young-Il;Chun, Si-Young;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.193-205
    • /
    • 2009
  • Typhoons occurred in the tropical Pacific region, these might be affected the Korea moving toward north. The strong winds and the heavy rains by the typhoons caused a natural disaster in Korea. In the research, the heavy rainfall events based on typhoons were evaluated quantitative through various statistical techniques. First, probability precipitation and typhoon probability precipitation were compared using frequency analysis. Second, EST probability precipitation was calculated by Empirical Simulation Techniques (EST). Third, NL probability precipitation was estimated by coupled Nonparametric monte carlo simulation and Locally weighted polynomial regression. At the analysis results, the typhoons can be effected Gangneung and Mokpo stations more than other stations. Conversely, the typhoons can be effected Seoul and Inchen stations less than other stations. Also, EST and NL probability precipitation were estimated by the long-term simulation using observed data. Consequently, major hydrologic structures and regions where received the big typhoons impact should be review necessary. Also, EST and NL techniques can be used for climate change by the global warming. Because, these techniques used the relationship between the heavy rainfall events and the typhoons characteristics.

Nonlinear Analysis of Steel-concrete Composite Girder Using Interface Element (경계면 요소를 사용한 강·콘크리트 혼합 거더의 비선형 거동 해석)

  • Kwon, Hee-Jung;Kim, Moon Kyum;Cho, Kyung Hwan;Won, Jong Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.281-290
    • /
    • 2009
  • In this study, an analysis technique of hybrid girder considering nonlinearity of steel-concrete contact surface is presented. Steel-concrete hybrid girder shows partial-interaction behavior due to the deformation of shear connectors, slip and detachment at the interface, and cracks under the applied loads. Therefore, the partial-interaction approach becomes more reasonable. Contact surface is modeled by interface element and analyzed nonlinearly because of cost of time and effort to detailed model and analysis. Steel and Concrete are modeled considering non-linearity of materials. Material property of contact surface is obtained from push-out test and input to interface element. For the constitutive models, Drucker-Prager and smeared cracking model are used for concrete in compression and tension, respectively, and a von-Mises model is used for steel. This analysis technique is verified by comparing it with test results. Using verified analysis technique, various analyses are performed with different parameters such as nonlinear material property of interface element and prestress. The results are compared with linear analysis result and analysis result with the assumption of full-interaction.

Numerical Investigations of Vorticity Generation in Fully Vegetated Open-Channel Flows (수치모의를 이용한 전단면 식생 수로에서의 와도 생성 분석)

  • Kang, Hyeongsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.179-189
    • /
    • 2010
  • This paper presents a numerical investigation of vorticity generation in fully vegetated open-channel flows. The Reynolds stress model is used for the turbulence closure. Open-channel flows with rough bed-smooth sidewalls and smooth bed-rough sidewalls are simulated. The computed vectors show that in channel flows with rough bed and rough sidewalls, the free-surface secondary currents become relatively smaller and larger, respectively, compared with that of plain channel flows. Also, open-channel flows over vegetation are simulated. The computed bottom vortex occupies the entire water depth, while the free-surface vortex is reduced. The contours of turbulent anisotropy and Reynolds stress are presented with different density of vegetation. The budget analysis of vorticity equation is carried out to investigate the generation mechanism of secondary currents. The results of the budget analysis show that in plain open-channel flow, the production by anisotropy is important in the vicinity of the wall and free-surface boundaries, and the production by Reynolds stress is important in the region away from the boundaries. However, this rule is not effective in vegetated channel flows. Also, in plain channel flows, the vorticity is generated mainly in the vicinity of the free-surface and the bottom, while in vegetated channel flows, the regions of the bottom and vegetation height are important to generate the vorticity.