• Title/Summary/Keyword: 건물 영역 탐지

Search Result 23, Processing Time 0.019 seconds

Detecting and Restoring Occlusion Area for Generating Digital Orthoimage (수치정사투영영상 제작을 위한 폐색영역의 탐지와 복원)

  • 권오형;김용일;김형태
    • Proceedings of the KSRS Conference
    • /
    • 2000.04a
    • /
    • pp.143-148
    • /
    • 2000
  • 레이저 프로파일링 시스템의 등장으로, 기존에는 얻을 수 없었던 도시 지역에 대한 DTM 취득이 가능해졌고, 더욱 정확한 정사투영영상 또한 제작할 수 있게 되었다. 하지만, 높이 변화를 보이는 자연지물과 인공구조물이 있는 지역에 대해 기존의 정사투영사진 제작기법이 적용될 때, 폐색이나 이중매핑과 같은 문제가 발생하게 된다. 특히 고층건물이 밀집되어 있는 도심지에서 이러한 현상은 두드러져 정사투영영상의 품질을 저해하는 주요한 원인이 된다. 따라서, 본 연구에서는 카메라의 외부표정요소와 DTM을 이용하여 폐색영역을 탐지하고, 폐색이 안된 다른 영상의 정보를 통해 폐색영역을 복원하여 더욱 완전한 정사투영을 제작할 수 있는 알고리즘을 제안하였다. 제안된 알고리즘에 의해 자연지물이나 인공고조물에 의한 폐색영역을 탐지할 수 있었고 폐색영역의 많은 부분을 부가영상을 이용하여 복원하였다. 건물에 대한 사전지식을 이용하여 폐색영역을 탐지하는 국내 연구가 있지만, 본 연구는 건물에 대한 부가정보나 모델링을 사용하지 않고 DTM과 카메라 외부표정요소만을 이용하여 폐색영역을 탐지한다는 점에서 이러한 연구들과 차별성을 가진다.

  • PDF

Building Change Detection Methodology in Urban Area from Single Satellite Image (단일위성영상 기반 도심지 건물변화탐지 방안)

  • Seunghee Kim;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1097-1109
    • /
    • 2023
  • Urban is an area where small-scale changes to individual buildings occur frequently. An existing urban building database requires periodic updating to increase its usability. However, there are limitations in data collection for building changes over a wide urban. In this study, we check the possibility of detecting building changes and updating a building database by using satellite images that can capture a wide urban region by a single image. For this purpose, building areas in a satellite image are first extracted by projecting 3D coordinates of building corners available in a building database onto the image. Building areas are then divided into roof and facade areas. By comparing textures of the roof areas projected, building changes such as height change or building removal can be detected. New height values are estimated by adjusting building heights until projected roofs align to actual roofs observed in the image. If the projected image appeared in the image while no building is observed, it corresponds to a demolished building. By checking buildings in the original image whose roofs and facades areas are not projected, new buildings are identified. Based on these results, the building database is updated by the three categories of height update, building deletion, or new building creation. This method was tested with a KOMPSAT-3A image over Incheon Metropolitan City and Incheon building database available in public. Building change detection and building database update was carried out. Updated building corners were then projected to another KOMPSAT-3 image. It was confirmed that building areas projected by updated building information agreed with actual buildings in the image very well. Through this study, the possibility of semi-automatic building change detection and building database update based on single satellite image was confirmed. In the future, follow-up research is needed on technology to enhance computational automation of the proposed method.

A Comparartive Analysis on Techniques of Shadow Extraction in a Single High Resolution Image. (고해상도 단영상에서의 그림자 추출기법 비교)

  • Song, Woo-Seok;Byun, Young-Gi;Kim, Yong-Min;Yu, Ki-Yun
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.127-132
    • /
    • 2007
  • 위성영상 기술의 발달과 고해상도 위성영상의 해상도 규제가 완화됨에 따라 건물의 높이 정보를 획득하는데 있어 고해상도 위성영상의 그림자 정보를 이용하는 연구들이 활발히 수행되어지고 있다. 그림자 정보를 이용하여 건물 높이 정보를 획득하는 연구의 정확도를 높이기 위해서는 정확한 건물의 그림자 탐지가 선행되어야 한다. 따라서 본 논문에서는 단영상을 이용한 그림자 탐지기법인 임계값법(Thresholding), 영상분류법, 영역확장법(Region Growing)을 건물의 그림자 탐지에 적용하여 각 기법의 장단점과 정확도를 평가하였다. 영상에서 수동으로 건물의 그림자를 디지타이징한 참조 자료와 기법들을 적용하여 탐지한 결과 영상을 시각적으로 비교하였고, 오차행렬(Confusion Matrix)을 이용한 전체정확도(Accuracy), F-measure, AOR(Area Overlap Ratio)을 이용하여 정량적인 정확도평가를 수행하였다. 실험결과 영역확장법을 적용한 경우 시각적 정량적으로 가장 높은 정확도를 보였으며, 영상분류법을 적용한 경우 시각적으로는 임계값을 적용한 경우보다 좋은 결과를 보였으나 정량적으로는 가장 낮은 정확도를 보였다.

  • PDF

Detection of Collapse Buildings Using UAV and Bitemporal Satellite Imagery (UAV와 다시기 위성영상을 이용한 붕괴건물 탐지)

  • Jung, Sejung;Lee, Kirim;Yun, Yerin;Lee, Won Hee;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.187-196
    • /
    • 2020
  • In this study, collapsed building detection using UAV (Unmanned Aerial Vehicle) and PlanetScope satellite images was carried out, suggesting the possibility of utilization of heterogeneous sensors in object detection located on the surface. To this end, the area where about 20 buildings collapsed due to forest fire damage was selected as study site. First of all, the feature information of objects such as ExG (Excess Green), GLCM (Gray-Level Co-Occurrence Matrix), and DSM (Digital Surface Model) were generated using high-resolution UAV images performed object-based segmentation to detect collapsed buildings. The features were then used to detect candidates for collapsed buildings. In this process, a result of the change detection using PlanetScope were used together to improve detection accuracy. More specifically, the changed pixels acquired by the bitemporal PlanetScope images were used as seed pixels to correct the misdetected and overdetected areas in the candidate group of collapsed buildings. The accuracy of the detection results of collapse buildings using only UAV image and the accuracy of collapse building detection result when UAV and PlanetScope images were used together were analyzed through the manually dizitized reference image. As a result, the results using only UAV image had 0.4867 F1-score, and the results using UAV and PlanetScope images together showed that the value improved to 0.8064 F1-score. Moreover, the Kappa coefficiant value was also dramatically improved from 0.3674 to 0.8225.

Building change detection in high spatial resolution images using deep learning and graph model (딥러닝과 그래프 모델을 활용한 고해상도 영상의 건물 변화탐지)

  • Park, Seula;Song, Ahram
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.227-237
    • /
    • 2022
  • The most critical factors for detecting changes in very high-resolution satellite images are building positional inconsistencies and relief displacements caused by satellite side-view. To resolve the above problems, additional processing using a digital elevation model and deep learning approach have been proposed. Unfortunately, these approaches are not sufficiently effective in solving these problems. This study proposed a change detection method that considers both positional and topology information of buildings. Mask R-CNN (Region-based Convolutional Neural Network) was trained on a SpaceNet building detection v2 dataset, and the central points of each building were extracted as building nodes. Then, triangulated irregular network graphs were created on building nodes from temporal images. To extract the area, where there is a structural difference between two graphs, a change index reflecting the similarity of the graphs and differences in the location of building nodes was proposed. Finally, newly changed or deleted buildings were detected by comparing the two graphs. Three pairs of test sites were selected to evaluate the proposed method's effectiveness, and the results showed that changed buildings were detected in the case of side-view satellite images with building positional inconsistencies.

Detecting and Restoring Occlusion Area for Generating Digital Orthoimage (수치정사투영영상 제작을 위한 폐색영역의 탐지와 복원)

  • 권오형;김형태;김용일
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.1
    • /
    • pp.51-57
    • /
    • 2000
  • With the emergence of laser mapping systems, higher resolution DTM of urban area can be acquired and can be used to generate precise orthoimage. But, when the conventional orthoimage generation methods are applied to the area containing features with height difference such as cliffs, bridges, banks. elevated highways and buildings, they cause problems such as occlusion and double mapping. Therefore, this study proposes a new algorithm by modifying and refining conventional orthoimage generation methods. With this algorithm, areas which have occlusion are detected from the base image using camera orientation parameters and DTM. Also, detected areas are restored using alternative images which does not have occlusion in that area. This study can be distinguished from the other studies in the aspects that the proposed algorithm in this paper doesn't need information on building and that uses DTM data and orientation parameters.

  • PDF

A Study on the Pixel based Change Detection in Urban Area (도심지역 화소기반 변화탐지 적용에 관한 연구)

  • Kwon, Seung-Joon;Shin, Sung-Woong;Yoon, Chang-Rak
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.06a
    • /
    • pp.202-205
    • /
    • 2008
  • 건물이 밀집된 도심지역을 촬영한 두 시기 항공영상에 화소기반 변화탐지 기법인 영상대차(Image Differencing), 영상중첩 분석(Image Overlay)기법을 적용하여 넓은 대도심지역의 효율적인 변화탐지 가능성을 살펴보았다. 영상대차(Image Differencing) 기법은 알고리즘이 간단하고 정량적인 분석이 가능한 결과를 얻을 수 있다는 장점이 있으나 고층건물밀집지역을 보여주고 있는 고해상도 항공영상의 적용과정에서는 폐색영역, 그림자 등으로 인해 정확한 변화탐지 결과를 보여주지 못했다. 영상중첩 분석(Image Overlay)기법은 한 번에 두 개 또는 세 개의 영상을 비교 분석할 수 있다는 장점이 있으나 직관적인 분석만을 제공하고 정량적인 분석이 불가능하였다. 현재의 화소기반 영상변화탐지 기술수준으로는 고해상도 공간영상에 대한 신뢰도 높은 변화탐지 분석결과를 얻을 수 없다는 것을 확인하였다.

  • PDF

Improvement of Building Region Correspondence between SLI and Vector Map Based on Region Splitting (영역분할에 의한 SLI와 벡터 지도 간의 건물영역 일치도 향상)

  • Lee, Jeong Ho;Ga, Chill O;Kim, Yong Il;Yu, Ki Yun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.4
    • /
    • pp.405-412
    • /
    • 2012
  • After the spatial discrepancy between SLI(Street-Level Imagery) and vector map is removed by their conflation, the corresponding building regions can be found based on SLI parameters. The building region correspondence, however, is not perfect even after the conflation. This paper aims to improve the correspondence of building regions by region splitting of an SLI. Regions are initialized by the seed lines, projection of building objects onto SLI scene. First, sky images are generated by filtering, segmentation, and sky region detection. Candidates for split lines are detected by edge detector, and then images are splitted into building regions by optimal split lines based on color difference and sky existence. The experiments demonstrated that the proposed region splitting method had improved the accuracy of building region correspondence from 83.3% to 89.7%. The result can be utilized effectively for enhancement of SLI services.

Region-based Building Extraction of High Resolution Satellite Images Using Color Invariant Features (색상 불변 특징을 이용한 고해상도 위성영상의 영역기반 건물 추출)

  • Ko, A-Reum;Byun, Young-Gi;Park, Woo-Jin;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.75-87
    • /
    • 2011
  • This paper presents a method for region-based building extraction from high resolution satellite images(HRSI) using integrated information of spectral and color invariant features without user intervention such as selecting training data sets. The purpose of this study is also to evaluate the effectiveness of the proposed method by applying to IKONOS and QuickBird images. Firstly, the image is segmented by the MSRG method. The vegetation and shadow regions are automatically detected and masked to facilitate the building extraction. Secondly, the region merging is performed for the masked image, which the integrated information of the spectral and color invariant features is used. Finally, the building regions are extracted using the shape feature for the merged regions. The boundaries of the extracted buildings are simplified using the generalization techniques to improve the completeness of the building extraction. The experimental results showed more than 80% accuracy for two study areas and the visually satisfactory results obtained. In conclusion, the proposed method has shown great potential for the building extraction from HRSI.

The Analysis of Change Detection in Building Area Using CycleGAN-based Image Simulation (CycleGAN 기반 영상 모의를 적용한 건물지역 변화탐지 분석)

  • Jo, Su Min;Won, Taeyeon;Eo, Yang Dam;Lee, Seoungwoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.4
    • /
    • pp.359-364
    • /
    • 2022
  • The change detection in remote sensing results in errors due to the camera's optical factors, seasonal factors, and land cover characteristics. The inclination of the building in the image was simulated according to the camera angle using the Cycle Generative Adversarial Network method, and the simulated image was used to contribute to the improvement of change detection accuracy. Based on CycleGAN, the inclination of the building was similarly simulated to the building in the other image based on the image of one of the two periods, and the error of the original image and the inclination of the building was compared and analyzed. The experimental data were taken at different times at different angles, and Kompsat-3A high-resolution satellite images including urban areas with dense buildings were used. As a result of the experiment, the number of incorrect detection pixels per building in the two images for the building area in the image was shown to be reduced by approximately 7 times from 12,632 in the original image and 1,730 in the CycleGAN-based simulation image. Therefore, it was confirmed that the proposed method can reduce detection errors due to the inclination of the building.