• Title/Summary/Keyword: 거푸집 재료

Search Result 57, Processing Time 0.022 seconds

Material and Structural Characteristics of High Performance Permanent Form Using Stainless Steel Fiber (스테인레스 강섬유를 이용한 고성능 영구거푸집의 재료 및 구조적 거동특성에 관한 연구)

  • Sim, Jong-Sung;Oh, Hong-Seob;Ju, Min-Kwan;Kim, Kil-Jung;Shin, Hyun-Yang
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.73-82
    • /
    • 2006
  • Nowadays, the general stripping work of form has brought some problems; increase of total constructing cost resulted from the man-dependent form work procedure and environmental issues by wasting the debonded form. In this study, to effectively reduce unnecessary cost and resolve the environmental problems caused by these kinds of reason, a permanent form method using stainless steel fiber was introduced then its material and structural characteristics were evaluated. In the case of material characteristic, the permanent form had a good ductile behavior in the result of flexural test of the permanent form panel and pull-out test of insert bolt which is installed in the permanent form and perfect bonding capacity with a field concrete. In the case of structural characteristic, compressive and tensile behavior of the permanent form was evaluated. It also showed a good structural behavior in the view of load-deflection relationship, crack patterns and additional strengthening effect.

A Study on the Performance Evaluation of Synthetic Resin Formwork Material (합성수지 거푸집 재료성능 검증에 관한 연구)

  • Nam, Kyung-Yong;Kim, Seong-Deok;Choi, Suk;Lee, Young-Do
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.151-152
    • /
    • 2019
  • This study length variation test, shock test were conducted to evaluate the performance of synthetic resin form. Results of both thermal length variation test and shock test satisfied the KS standards. for length variation test, the result of the horizontal and vertical valuse were -0.1% in average.

  • PDF

A Study on the Prevention of Collapse Disaster in a Form (거푸집 동바리 붕괴재해 예방대책 에 의한 연구)

  • Ham, Eun-Gu;Heo, Dai-Seong
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2023.11a
    • /
    • pp.161-162
    • /
    • 2023
  • 본 연구는 거푸집 동바리 붕괴재해 예방대책 마련하기 위해 실시되었으며 구조검토, 재료문제, 설치문제, 작업방법 불량 등으로 기존의 가설작업이 서류적으로 형식상의 안전점검 및 구조검토서를 반영한 현장관리로 재해발생이 빈번하게 이루어지고 있는점을 착안해 현장대응 방법을 변경하여 관리하는데 목적을 둔다.

  • PDF

A Study on the Prevention of Collapse Disaster in a Form (거푸집 동바리 붕괴재해 예방대책 에 의한 연구)

  • Ham, Eun-Gu;Heo, Dai-Seong
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2022.10a
    • /
    • pp.313-314
    • /
    • 2022
  • 본 연구는 거푸집 동바리 붕괴재해 예방대책 마련하기 위해 실시되었으며 구조검토, 재료문제, 설치문제, 작업방법 불량 등으로 기존의 가설작업이 서류적으로 형식상의 안전점검 및 구조검토서를 반영한 현장관리로 재해발생이 빈번하게 이루어지고 있는점을 착안해 현장대응 방법을 변경하여 관리하는데 목적을 둔다.

  • PDF

A Study on the Applicability of Multipurpose Functional Synthetic Resin Formworks (다목적 기능 합성수지 거푸집 현장 적용성에 관한 연구)

  • Kim, Tae-Hui;Ahn, Sung-Jin;Lee, Young-Do;Choi, Suk;Nam, Kyung-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.143-144
    • /
    • 2018
  • This study the workability of synthetic resin form was examined through field application. results there was no warping or bulging of the mold during concrete placement in the field application. Also, the concrete surface finish of synthetic resin form was better than that of euro-form.

  • PDF

A Study of Iron Pot Casting and Bellows Technology (토제 거푸집 무쇠솥 주조와 불미기술 연구)

  • Yun, Yonghyun;Doh, Jungmann;Jeong, Yeongsang
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.2
    • /
    • pp.4-23
    • /
    • 2020
  • The purpose of this study was to explore the diversity of Korea's iron casting technology and to examine various casting methods. The study involved a literature review, analysis of artifacts, local investigation of production tools and technology, and scientific analysis of casting and cast materials. Bellows technology, or Bulmi technology, is a form of iron casting technology that uses bellows to melt cast iron before the molten iron is poured into a clay cast. This technology, handed down only in Jeju Island, relies on use of a clay cast instead of the sand cast that is more common in mainland Korea. Casting methods for cast iron pots can be broadly divided into two: sand mold casting and porcelain casting. The former uses a sand cast made from mixing seokbire (clay mixed with soft stones), sand and clay, while the latter uses a clay cast, formed by mixing clay with rice straw and reed. The five steps in the sand mold casting method for iron pot are cast making, filling, melting iron into molten iron, pouring the molten iron into the cast mold, and refining the final product. The six steps in the porcelain clay casting method are cast making, cast firing, spreading jilmeok, melting iron into molten iron, pouring the molten iron, and refining the final product. The two casting methods differ in terms of materials, cast firing, and spreading of jilmeok. This study provided insight into Korea's unique iron casting technology by examining the scientific principles behind the materials and tools used in each stage of iron pot casting: collecting and kneading mud, producing a cast, biscuit firing, hwajeokmosal (building sand on the heated cast) and spreading jilmeok, drying and biyaljil (spreading jilmeok evenly on the cast), hapjang (combining two half-sized casts to make one complete cast), producing a smelting furnace, roasting twice, smelting, pouring molten iron into a cast, and refining the final product. Scientific analysis of the final product and materials involved in porcelain clay casting showed that the main components were mud and sand (SiO2, Al2O3, and Fe2O3). The release agent was found to be graphite, containing SiO2, Al2O3, Fe2O3, and K2O. The completed cast iron pot had the structure of white cast iron, comprised of cementite (Fe3C) and pearlite (a layered structure of ferrite and cementite).

Performance Evaluation of Softwood Plywood as Structural and Concrete-Form Panels (침엽수 합판의 구조용 및 콘크리트 거푸집용으로서의 성능 평가)

  • Lee, Jun-Jae;Kim, Gwang-Chul;Lee, Guk-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.14-24
    • /
    • 2000
  • In present research, the plywoods made of radiata pine or Japanese larch, the potential softwood species in mass supply, were discussed to examine their feasibility as the structural and concrete form panels through the basic properties test. First, plywood qualities and its nail performance were tested. The performance test for concrete form or structural panel by concentrated and uniformly distributed load were conducted to investigate the possibility as structural material for light frame and concrete constructions. Test results of basic quality such as specific gravity, cupping, bowing, and twisting appeared to satisfy the criteria for structural use. Also, nail performance test results, for roof and wall sheathing panels, nail lateral resistance, nail withdrawal resistance, and nail push head resistance proved to meet the required standard for structural use. The test results on performance as structural panel by concentrated and uniformly distributed load and as concrete form panel showed that these two species could be used for structural sheathing, subfloor, and concrete form panels.

  • PDF

A Study on Life-Cycle Environmental Impact of Synthetic Resin Formwork (합성수지 거푸집의 전과정 환경영향평가에 관한 연구)

  • Nam, Kyung-Yong;Yang, Keun-Hyeok;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.3
    • /
    • pp.245-252
    • /
    • 2020
  • Synthetic resin formwork is made of lightweight high-density polyethylene(HDPE). This study used a process flow chart that satisfies the system boundary (such as Cradle-to- Product shipmen ) required by ISO FDIS 13352 to evaluate the entire process of synthetic resin foam using. The entire life cycle inventory (LCI) database calculated from input energy sources, materials used, transportation methods, and manufacturing processes at the system boundary was analyzed. Based on the environmental impact assessment index methodology of the Ministry of Environment from the LCI data analysis of synthetic resin formwork, the environmental impact assessment was carried out through classification, normalization, characterization, and weighting process. The experimental results are as follows the amount of CO2 (carbon) emission considering the number of conversions was about 32% lower than that of the Euroform. This shows that the use of synthetic resin formwork reduces material production by half compared to Euroform and reduces CO2 (carbon) emissions.

Experiment for Verification of Prediction Model for see Formwork Pressure (자기충전 콘크리트의 거푸집 압력 예측 모델에 대한 검증 실험)

  • Kwon, Seung-Hee;Phung, Quoc-Tri;Kim, Jae-Hong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.217-218
    • /
    • 2009
  • This experimental work is to verify the previously developed prediction model for self-consolidating concrete (SCC) formwork pressure. A new apparatus was devised to simulate formwork pressure in laboratory, and experiments were performed for one SCC mix. The predicted pressure with the calibrated parameters were compared with the pressure measured under continuous and discrete pouring. The calibrated parameters have a specific trend over loading time, and the calculated pressure accurately simulates the real pressure varying over time.

  • PDF