• Title/Summary/Keyword: 거리 감쇠

Search Result 197, Processing Time 0.026 seconds

Review on $M_L$ Scales in Southern Korea (한반도 남부의 지역규모식 검토)

  • Shin Jin Soo;Chi Heon Cheol;Cho Chang-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.43-46
    • /
    • 2005
  • The local magnitude scales yield in the Southern Korean Peninsula following the Richter's original definition are reviewed. In order to compare the previous $M_L$ scales, the new distance correction term of $M_L$ scale is derived as $-logA_{0}$ = 1.017log(r/17)+0.00028(r-17)2+2.0 using broadband velocity seismograms from 126 local events occured from 2000 to 2004. The attenuation rate of this formula fall between those of western and eastern North America. This result is in nearly accord with the $M_L$ scales proposed by Kim and Park(2002). The differences between various $M_L$ scales is owing to insufficient seismic data not to distribute whole area of Southern Korea

  • PDF

A Study on Calculation of Protection Ratio for Interference Analysis in Fixed Radio Relay Networks (고정 무선중계 망의 간섭 분석을 위한 보호비 계산에 대한 연구)

  • Suh Kyoung-Whoan;Lee Joohwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.1 s.343
    • /
    • pp.133-142
    • /
    • 2006
  • This paper suggests an efficient method of protection ratio(PR) calculation and shows some results of point-to-point radio relay system for frequency coordination. The proposed PR can be expressed as a function of C/N of modulation scheme, noise-to-interference ratio(N/I), multiple interference allowance, fade margins of multi-Path and rain attenuation and net filter discrimination. And PR calculation is performed in view of fade margin, modulation scheme, distance, and interference for actual point-to-point radio relay frequency. According to results for 6.2 GHz, 64-QAM and 60 km at BER 10-6, fade margin and co-channel Protection ratio reveal 41.1dB and 74.9 dB, respectively The merit of presented method provides a systematic and easy calculation by means of PR correction factor related with various parameters and can apply the same concept to frequency coordination of millimeter wave radio relay system.

A smartphone toy control system based on bluetooth using stop-and-wait ARQ protocol (Stop-and-Wait ARQ 프로토콜을 적용한 스마트폰의 블루투스 기반 완구 제어 시스템)

  • Song, J.H.;Kim, H.K.;Shin, O.K.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.723-729
    • /
    • 2014
  • When the bluetooth technology of smartphone is applied to a remote control system, communication errors caused by wave attenuation and interference results in the shortening of communication distance, loss of the target device control and malfunctioning. In this study, we propose a method to adopt a retransmission persistence controlled S/W ARQ in bluetooth communication to minimize the effect of the communication failure and to detect and handle the state where the target device gets lost control. We implemented a motor-driven RC car equpped with a bluetooth communication module and a steering application program on smartphone to test the proposed method. The experiments are conducted in three communication environments, and have resulted in the increase of the communication distance by at least 30% when S/W ARQ is applied. Moreover, when the communication was disrupted due to environmental disturbances, the S/W ARQ based system stopped immediately any undergoing operations to avoid possible malfunction.

Analysis of Velocity Structure of Round Wall Jet (원형바닥젵의 유속구조 해석)

  • Kim, Dae-Geun;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.467-475
    • /
    • 1997
  • In this study, breakwater model which has several outlet pipes to discharge heated water is settled in the experimental open channel and velocity distribution of wall jet is measured. Numerical simulation of velocity structure of wall jet using 3-dimensional computer model. Fluent model, is also carried out. The calculated results are verified with the experimental results and the flow characteristics of wall jet are investigated. The length of zone of flow establishment of wall jet is shorter than that of free jet, and the diminution rate of jet centerline longitudinal velocity is larger than that of free jet. Characteristics of buoyant jet and non-buoyant simple jet simulated by Fluent model are compared. Near the outlet pipe, in the region where x/lQ is over 15, this is reversed. Comparison of vertical distribution of longitudinal velocity shows that positive velocity of non-buoyant jet is bigger than that of buoyant jet in the bottom layer and in the upper layer, negative velocity of non-buoyant jet is bigger too. Flow separation in free surface of the buoyant jet occurs in smaller distances from the outlet than the non-buoyant jet. Buoyant jet expands faster than the non-buoyant jet in vertical direction.

  • PDF

Identification of Dynamic Characteristics and Numerical Analysis of Ceiling System Considering Collision Adjacent Structures (천장시스템의 동특성 식별 및 인접 구조물과의 충돌을 고려한 동적응답해석)

  • Jeon, Min-Jun;Ju, Bo-Geun;Cho, Bong-Ho;Lee, Sang-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.4
    • /
    • pp.205-213
    • /
    • 2019
  • In the Pohang Earthquake in 2017, considerable damage to non-structural elements, such as ceiling systems, exterior finishes, and curtain walls, was reported; thus, the seismic designs of non-structural elements are important. In this study, the modal characteristics of a ceiling system were investigated through the impact hammer test. The frequency and damping ratio according to the length of the hanger bolt were identified. In addition, collision experiments were conducted to obtain the impact duration for exactly considering the impact effects of the ceiling against a wall or other adjacent elements. Based on the identified dynamics and impact duration of the ceiling system, the seismic responses of the ceiling system were obtained numerically in case of collision. Numerical simulation results show that the impact load tends to increase with the clearance between the ceiling and adjacent elements, and is not correlated with the length of the hanger bolt.

Estimation of Velocities of Acoustic Signals and Source Locations in PSC Beam by Acoustic Emission (AE기법을 이용한 PSC보의 음파속도와 음원위치 산정방법)

  • Youn, Seok-Goo;Lee, Changno;Kim, Eun-Kyum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.917-925
    • /
    • 2006
  • Experimental tests were performed to estimate velocities of the acoustic signals through prestressed concrete beam and source locations using acoustic emission (AE) techniques. Seven AE sensors are mounted on the surface of 5m length test beam with equal spacing and using Schmidt Hammer AE events are made at 18 locations. The velocities of AE signals are estimated using the time differences of arrival times and the distances between the source locations and the AE sensor locations. In addition, using the Least Square Method, the AE source locations are re-evaluated reversely using both of the arrival times and the velocities of AE signals. Test results show the average velocity of the AE signals is about 4,000 m/sec and the velocity decreased with the increase of the distance from source locations to AE sensors due to the effect of attenuation. Based on the estimation of the source locations, it is observed that the errors of source locations are decreased when the velocities of each AE sensor are used rather than the average velocity.

S-wave Velocity and Attenuation Structure from Multichannel Seismic surface waves: Geotechnical Characteristics of NakDong Delta Soil (다중채널 표면파 자료를 이용하여 구한 S파 속도와 감쇠지수 구조: 낙동강 하구의 연약 지반 특성)

  • Jung, Hee-Ok
    • Journal of the Korean earth science society
    • /
    • v.25 no.8
    • /
    • pp.774-783
    • /
    • 2004
  • The S wave velocity and Q$s^{-1}$ structure of the uppermost part of the soil in Nakdong Delta area have been obtained to determine the characteristics of the forementioned soil. The phase and attenuation coefficients of multichannel seismic records were inverted to obtain the S wave velocity and Q$s^{-1}$ structure of the soil. The inversion results have been compared with the borehole measurements of the area. The seismic signal of the nearest geophone from a seismic source was used as the source signal to obtain the attenuation coefficients. Amplitude ratios of the signal at each geophone to the source signal wave plotted as a function of distance for the frequency range between 10 Hz and 45 Hz. The slope of a linear regression line which fits amplitude ratio-distance relationship best for a given frequency was used as the attenuation coefficients for the frequency. The dispersion curve of Rayleigh waves and the attenuation coefficients were inverted to obtain the S-wave velocity and Q$s^{-1}$, respectively, in the uppermost 8 meter of soil layer. The borehole measurements of the area show that are two distinct layers; the upper 4 meter of silty-sand and the lower 4 meter of silty-clay. The inversion results indicate that the shear wave velocity of the upper layer is 80 m/sec and 40m/sec in the lower silty-clay layer. The spacial resolution of the shear wave velocity structure is very good down to a depth of 8 meter. The Q$s^{-1}$ in the upper silty-sand layer is 0.02 and increase to 0.03 in the lower silty-sand layer. The spacial resolution of quality factor is relatively good down to a depth of 5 meter, but very poor below the depth. In this study, the S-wave velocity is higher in the silty-clay and the Q$s^{-1}$ is smaller silty-sand than in the silty-clay. However, much more data should be analyzed and accumulated before making any generalization on the shear wave velocity and Q$s^{-1}$ of the sediments.

Relationship between Rock Quality Designation and Blasting Vibration Constant "K" & Decay Constant "n" by Bottom Blasting Pattern (바닥발파에서 암질지수(RQD)와 발파진동상수 K, n의 관계)

  • 천병식;오민열
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.55-68
    • /
    • 1995
  • This paper is the analysis of the relationship between RQD and decay constant, blasting vi bration constant of cube root scaling and square root scaling, through experimental blast ins test in subway construction for excavation of shaft hole by bottom blasting. The magnitude of particle velocity is largely effected by the distance from blasting source, the maximum charge per delay and the properties of ground. In order to verify the effects of ground properties on blast-induced vibration, the relation-ship between magnitude of blasting vibration and Rock Quality Disignation which stands for joint property was studied. The results of test are verified that blasting vibration constant "K" and the absolute value("n") of decay constant relatively increse as RQD increased. According to the result, it can be predict the particle velocity by the blast -induced vibration in bottom blasting pattern.om blasting pattern.

  • PDF

Study on the Empirical Equations for Pressure Curve by Air Blast (폭발파에 의한 폭발압력곡선 경험식에 관한 연구)

  • Kwon, Sangki
    • Explosives and Blasting
    • /
    • v.35 no.1
    • /
    • pp.1-17
    • /
    • 2017
  • The understanding of the pressure associated with air blast, which travels through air, and its effect on surface and underground structures is highly important. It is necessary to determine the pressure change with time and distance for a computer simulation of the explosion impact on a structure. From the previous studies, many empirical equations for estimating the parameters related to the pressure change. In this study, the empirical equations for predicting peak overpressure, duration of positive phase, impulse, minimum negative pressure, duration of negative pressure, arrival time, and decay constant were reviewed and analyzed. Also, the pressure changes predicted from the Kingery equation, which is the most commonly used, and from the other empirical equations were compared.

Haptic Simulation Algorithm for Tooth Scaling Training (치아 스케일링 훈련을 위한 햅틱 시뮬레이션 알고리즘)

  • Cho, Jae-Hyun;Kim, Jai-Hyun;Park, Jin-Ah
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06b
    • /
    • pp.290-293
    • /
    • 2011
  • 치아 스케일링은 치아에 단단하게 결착된 치석을 제거하는 치과 시술로서 치아 우식 및 잇몸염증을 예방하는 중요한 시술이다. 특히 요즘에는 치료시간의 단축을 통한 효율성 증대의 목적으로 전기적 에너지를 미세한 진동에너지로 바꾸는 원리를 활용한 초음파 스케일링 기법이 많이 행해지고 있다. 하지만 치아 및 치석 확보에 따른 어려움으로 인해 스케일링 시술을 충분히 훈련하기란 쉽지 않다. 본 논문에서는 사용자가 가상현실을 통해 시각 및 촉각 피드백을 받으며 초음파 스케일링 시술을 훈련할 수 있는 치아 스케일링 시뮬레이션을 위한 알고리즘을 제안한다. 치아, 치석 및 잇몸의 볼륨모델과 스케이러 팁을 구성하는 각 부문의 관통깊이를 이용한 햅틱 랜더링 기법을 적용하여 스케일러의 모양에 따른 햅틱 피드백을 생성하였다. 그리고 치아의 손상을 줄이기 위해 스케일러의 팁 부문이 치아 표면에 되도록 평형을 이루어야 한다는 점에 입각하여, 치석을 구성하는 복셀들의 치아 디스턴스필드 값 비교를 통해 치석과 치아 사이의 접착면을 추출하고 스케일러의 팁 부분과 충돌하는 추출된 집착면의 각도를 고려한 스케일링 알고리즘을 구현하였다. 또한 수동 스케일링과는 달리 초음파 스케일링은 초음파의 진동에너지에 의해 점진적으로 치아와 치석 사이의 결속력이 감소된다는 점에 착안하여 치아와 치석의 접착면을 구성하는 지점 사이의 거리에 따른 결속력 감쇠 모델을 고안하였다.