• Title/Summary/Keyword: 거리정보

Search Result 5,312, Processing Time 0.036 seconds

Analysis of a CubeSat Magnetic Cleanliness for the Space Science Mission (우주과학임무를 위한 큐브위성 자기장 청결도 분석)

  • Jo, Hye Jeong;Jin, Ho;Park, Hyeonhu;Kim, Khan-Hyuk;Jang, Yunho;Jo, Woohyun
    • Journal of Space Technology and Applications
    • /
    • v.2 no.1
    • /
    • pp.41-51
    • /
    • 2022
  • CubeSat is a satellite platform that is widely used not only for earth observation but also for space exploration. CubeSat is also used in magnetic field investigation missions to observe space physics phenomena with various shape configurations of magnetometer instrument unit. In case of magnetic field measurement, the magnetometer instrument should be far away from the satellite body to minimize the magnetic disturbances from satellites. But the accommodation setting of the magnetometer instrument is limited due to the volume constraint of small satellites like a CubeSat. In this paper, we investigated that the magnetic field interference generated by the cube satellite was analyzed how much it can affect the reliability of magnetic field measurement. For this analysis, we used a reaction wheel and Torque rods which have relatively high-power consumption as major noise sources. The magnetic dipole moment of these parts was derived by the data sheet of the manufacturer. We have been confirmed that the effect of the residual moment of the magnetic torque located in the middle of the 3U cube satellite can reach 36,000 nT from the outermost end of the body of the CubeSat in a space without an external magnetic field. In the case of accurate magnetic field measurements of less than 1 nT, we found that the magnetometer should be at least 0.6 m away from the CubeSat body. We expect that this analysis method will be an important role of a magnetic cleanliness analysis when designing a CubeSat to carry out a magnetic field measurement.

Development of Data Analysis and Interpretation Methods for a Hybrid-type Unmanned Aircraft Electromagnetic System (하이브리드형 무인 항공 전자탐사시스템 자료의 분석 및 해석기술 개발)

  • Kim, Young Su;Kang, Hyeonwoo;Bang, Minkyu;Seol, Soon Jee;Kim, Bona
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.1
    • /
    • pp.26-37
    • /
    • 2022
  • Recently, multiple methods using small aircraft for geophysical exploration have been suggested as a result of the development of information and communication technology. In this study, we introduce the hybrid unmanned aircraft electromagnetic system of the Korea Institute of Geosciences and Mineral resources, which is under development. Additionally, data processing and interpretation methods are suggested via the analysis of datasets obtained using the system under development to verify the system. Because the system uses a three-component receiver hanging from a drone, the effects of rotation on the obtained data are significant and were therefore corrected using a rotation matrix. During the survey, the heights of the source and the receiver and their offsets vary in real time and the measured data are contaminated with noise. The noise makes it difficult to interpret the data using the conventional method. Therefore, we developed a recurrent neural network (RNN) model to enable rapid predictions of the apparent resistivity using magnetic field data. Field data noise is included in the training datasets of the RNN model to improve its performance on noise-contaminated field data. Compared with the results of the electrical resistivity survey, the trained RNN model predicted similar apparent resistivities for the test field dataset.

A Study on Area-Wide Integrated Termite Management for the Preservation of Wooden Built Heritage (목조건축문화재의 예방 보존을 위한 공간적 통합 흰개미 관리(AW-ITM)의 적용)

  • KIM, Sihyun;CHUNG, Yongjae
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.3
    • /
    • pp.60-72
    • /
    • 2022
  • A number of wooden built heritage remain in Korea, and most have been damaged by various biological factors including termite. Owing to the irreversible damage caused by termites, wooden built heritage are losing their authenticity and structural stability. In this study, Area-Wide Integrated Termite Management(AW-ITM) was proposed to prevent termite damage. First, to understand the locational characteristics of these sites, the distance from adjacent forests and surrounding forest areas was analyzed for 182 national designated wooden built heritage(national treasures, treasures) using the Geographic Information System(GIS). By analyzing existing pest control projects(2003-2020) and the components of the ITM, the characteristics of termite control for cultural heritages were determined. Based on these results, the cultural heritage sites and their surrounding spaces were divided into three areas, and the types of cultural properties were divided into six types according to the location and number of buildings. Along with this, termite control measures were proposed for each area and type. The concept of AW-ITM has been partially applied to the "Comprehensive Control of Termites in wooden built heritages Sites" by the Cultural Heritage Administration. Caution must be taken with regard to the establishment of a cultural heritage management policy; AW-ITM should be applied on a trial basis with the results then being carefully analyzed and reflected in the establishment of policies pertaining to the conservation management of cultural heritage.

3D Explosion Analyses of Hydrogen Refueling Station Structure Using Portable LiDAR Scanner and AUTODYN (휴대형 라이다 스캐너와 AUTODYN를 이용한 수소 충전소 구조물의 3차원 폭발해석)

  • Baluch, Khaqan;Shin, Chanhwi;Cho, Yongdon;Cho, Sangho
    • Explosives and Blasting
    • /
    • v.40 no.3
    • /
    • pp.19-32
    • /
    • 2022
  • Hydrogen is a fuel having the highest energy compared with other common fuels. This means hydrogen is a clean energy source for the future. However, using hydrogen as a fuel has implication regarding carrier and storage issues, as hydrogen is highly inflammable and unstable gas susceptible to explosion. Explosions resulting from hydrogen-air mixtures have already been encountered and well documented in research experiments. However, there are still large gaps in this research field as the use of numerical tools and field experiments are required to fully understand the safety measures necessary to prevent hydrogen explosions. The purpose of this present study is to develop and simulate 3D numerical modelling of an existing hydrogen gas station in Jeonju by using handheld LiDAR and Ansys AUTODYN, as well as the processing of point cloud scans and use of cloud dataset to develop FEM 3D meshed model for the numerical simulation to predict peak-over pressures. The results show that the Lidar scanning technique combined with the ANSYS AUTODYN can help to determine the safety distance and as well as construct, simulate and predict the peak over-pressures for hydrogen refueling station explosions.

Analysis of Vehicle Selection Factors Using Energy Census (에너지총조사를 이용한 차량 선택 요인 분석)

  • Shin, Him Chul;Won, DooHwan
    • Environmental and Resource Economics Review
    • /
    • v.31 no.2
    • /
    • pp.291-317
    • /
    • 2022
  • This study tried to analyze the factors affecting consumers' vehicle selection for the spread of eco-friendly vehicles. We used the energy census data for this purpose, and although the energy census collects useful information from a large number of samples, it has been limitedly used to create simple statistics in many cases. Based on 2,771 transport sector microdata from the 2017 Energy Census, we collected vehicle price, fuel efficiency, and number of vehicle models, which are alternative characteristic variables that change according to consumers' choice, and converted and analyzed data to enable conjoint analysis. The analysis results in two-folds. First, it was confirmed that the official fuel efficiency of a vehicle and the fuel cost, which is affected by changes in the relative price of each fuel, are important variables in selecting an eco-friendly vehicle. In order to achieve the goal of spread of eco-friendly vehicles, it is necessary to develop technologies to improve fuel efficiency and set appropriate electric rates for charging electric vehicles. Second, an increase in the number of vehicle models through the expansion of the eco-friendly car industry and market also affects consumers' choice of eco-friendly vehicles, so efforts to expand the supply of eco-friendly vehicles will be an important factor. In addition, it is also significant that this study showed that the use of the energy census can be diversified by deriving meaningful policy implications using the results of the energy census periodically conducted in the country without a separate survey.

Control Method for the Number of Travel Hops for the ACK Packets in Selective Forwarding Detection Scheme (선택적 전달 공격 탐지기법에서의 인증 메시지 전달 홉 수 제어기법)

  • Lee, Sang-Jin;Kim, Jong-Hyun;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.2
    • /
    • pp.73-80
    • /
    • 2010
  • A wireless sensor network which is deployed in hostile environment can be easily compromised by attackers. The selective forwarding attack can jam the packet or drop a sensitive packet such as the movement of the enemy on data flow path through the compromised node. Xiao, Yu and Gao proposed the checkpoint-based multi-hop acknowledgement scheme(CHEMAS). In CHEMAS, each path node enable to be the checkpoint node according to the pre-defined probability and then can detect the area where the selective forwarding attacks is generated through the checkpoint nodes. In this scheme, the number of hops is very important because this parameter may trade off between energy conservation and detection capacity. In this paper, we used the fuzzy rule system to determine adaptive threshold value which is the number of hops for the ACK packets. In every period, the base station determines threshold value while using fuzzy logic. The energy level, the number of compromised node, and the distance to each node from base station are used to determine threshold value in fuzzy logic.

A Study on Transport Robot for Autonomous Driving to a Destination Based on QR Code in an Indoor Environment (실내 환경에서 QR 코드 기반 목적지 자율주행을 위한 운반 로봇에 관한 연구)

  • Se-Jun Park
    • Journal of Platform Technology
    • /
    • v.11 no.2
    • /
    • pp.26-38
    • /
    • 2023
  • This paper is a study on a transport robot capable of autonomously driving to a destination using a QR code in an indoor environment. The transport robot was designed and manufactured by attaching a lidar sensor so that the robot can maintain a certain distance during movement by detecting the distance between the camera for recognizing the QR code and the left and right walls. For the location information of the delivery robot, the QR code image was enlarged with Lanczos resampling interpolation, then binarized with Otsu Algorithm, and detection and analysis were performed using the Zbar library. The QR code recognition experiment was performed while changing the size of the QR code and the traveling speed of the transport robot while the camera position of the transport robot and the height of the QR code were fixed at 192cm. When the QR code size was 9cm × 9cm The recognition rate was 99.7% and almost 100% when the traveling speed of the transport robot was less than about 0.5m/s. Based on the QR code recognition rate, an experiment was conducted on the case where the destination is only going straight and the destination is going straight and turning in the absence of obstacles for autonomous driving to the destination. When the destination was only going straight, it was possible to reach the destination quickly because there was little need for position correction. However, when the destination included a turn, the time to arrive at the destination was relatively delayed due to the need for position correction. As a result of the experiment, it was found that the delivery robot arrived at the destination relatively accurately, although a slight positional error occurred while driving, and the applicability of the QR code-based destination self-driving delivery robot was confirmed.

  • PDF

A Study of the Stability on Standing posture of Single leg in Yoga practicing (요가 수련을 통한 한발서기 자세의 안정화 연구)

  • Yoo, Sil;Hong, Su-yeon;Yoo, Sun-sik
    • 한국체육학회지인문사회과학편
    • /
    • v.55 no.6
    • /
    • pp.749-757
    • /
    • 2016
  • The purpose of this study was to investigate the effect of stability on one leg standing posture in yoga practice. Thirteen women college student who have never done yoga participated in this study. In order to collect data before and after yoga practicing for two years, we were used 3D motion capture system and electromyography. The results were as follows. First, ranges of motions for Y axis of left knee joint and X axis of right ankle joint were significantly different in dancer posture(p<.05), and then X axis of right ankle and Y axis of left ankle joint were significantly different in tree posture of pre and post training. Second, the planar alignment angle of trunk-pelvis was not significant difference in dancer and tree posture. Third, CoM-distances of Y, Z directions were significant difference in the tree posture(p<.05). Fourth, Muscle activities of both rectus abdominis, erector spinae and left quadriceps were significant difference in tree posture(p<.05). These findings suggested that yoga training played important roles in stable postures as results of decreasing rotation ankle joint and movement of CoM and enforcing core muscles. This study provides evidence for effectiveness of the stability on standing posture and can get a great effect on posture correction by means of yoga training. Hereafter, study on alignment angle, which is a measurement of postural stabilization will be needed by future yoga training.

Comparison of Micro Mobility Patterns of Public Bicycles Before and After the Pandemic: A Case Study in Seoul (팬데믹 전후 공공자전거의 마이크로 모빌리티 패턴 비교: 서울시 사례 연구)

  • Jae-Hee Cho;Ga-Eun Baek;Il-Jung Seo
    • The Journal of Bigdata
    • /
    • v.7 no.2
    • /
    • pp.235-244
    • /
    • 2022
  • The rental history data of public bicycles in Seoul were analyzed to examine how pandemic phenomena such as COVID-19 caused changes in people's micro mobility. Data for 2019 and 2021 were compared and analyzed by dividing them before and after COVID-19. Data were collected from public data portal sites, and data marts were created for in-depth analysis. In order to compare the changes in the two periods, the riding direction type dimension and the rental station type dimension were added, and the derived variables (rotation rate per unit, riding speed) were newly created. There is no significant difference in the average rental time before and after COVID-19, but the average rental distance and average usage speed decreased. Even in the mobility of Ttareungi, you can see the slow rhythm of daily life. On weekdays, the usage rate was the highest during commuting hours even before COVID-19, but it increased rapidly after COVID-19. It can be interpreted that people who are concerned about infection prefer Ttareungi to village buses as a means of micro-mobility. The results of data mart-based visualization and analysis proposed in this study will be able to provide insight into public bicycle operation and policy development. In future studies, it is necessary to combine SNS data such as Twitter and Instagram with public bicycle rental history data. It is expected that the value of related research can be improved by examining the behavior of bike users in various places.

Advances in Shoreline Detection using Satellite Imagery (위성영상을 활용한 해안선 탐지 연구동향)

  • Tae-Soon Kang;Ho-Jun Yoo;Ye-Jin Hwang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.598-608
    • /
    • 2023
  • To comprehensively grasp the dynamic changes in the coastal terrain and coastal erosion, it is imperative to incorporate temporal and spatial continuity through frequent and continuous monitoring. Recently, there has been a proliferation of research in coastal monitoring using remote sensing, accompanied by advancements in image monitoring and analysis technologies. Remote sensing, typically involves collection of images from aircraft or satellites from a distance, and offers distinct advantages in swiftly and accurately analyzing coastal terrain changes, leading to an escalating trend in its utilization. Remote satellite image-based coastal line detection involves defining measurable coastal lines from satellite images and extracting coastal lines by applying coastal line detection technology. Drawing from the various data sources surveyed in existing literature, this study has comprehensively analyzed encompassing the definition of coastal lines based on satellite images, current status of remote satellite imagery, existing research trends, and evolving landscape of technology for satellite image-based coastal line detection. Based on the results, research directions, on latest trends, practical techniques for ideal coastal line extraction, and enhanced integration with advanced digital monitoring were proposed. To effectively capture the changing trends and erosion levels across the entire Korean Peninsula in future, it is vital to move beyond localized monitoring and establish an active monitoring framework using digital monitoring, such as broad-scale satellite imagery. In light of these results, it is anticipated that the coastal line detection field will expedite the progression of ongoing research practices and analytical technologies.